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ANNOTATION 

This book gives  a n  account of t h e  phys ica l  foundations and p r inc ip l e s  of 
constructing apparatus f o r  inves t iga t ing  t h e  upper atmosphere as well as t h e  
foundations of measuring techniques and preliminary processing of t h e  data .  

Pa r t i cu la r  a t t e n t i o n  i s  devoted t o  a descr ip t ion  of t h e  apparatus used f o r  
meteorological sa te l l i tes  and meteorological and geophysical rockets.  

The book i s  intended for students  of I n s t i t u t e s  of higher learning, 
engineers, teachers ,  and s c i e n t i f i c  workers i n  t h e  domains of geophysics, 
meteorology, radio communications, astronomy, aviat ion,  and as t ronaut ics .  
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FOFEWORD L2 

The p r a c t i c e  of rocket i nves t iga t ions  of t h e  upper atmosphere and ou te r  
space and t h e  launching of t h e  most d iverse  a r t i f i c i a l  e a r t h  satellites and i n t e r 
p lane tary  s t a t i o n s  has necess i ta ted  t h e  development of methods of i nves t iga t ion  
and apparatus f o r  measuring numerous parameters charac te r iz ing  t h e  state of t h e  
atmosphere and ou te r  space. 

Manned space f l i g h t s  have made it poss ib l e  t o  expand evermore t h e  scope of 
i nves t iga t ions  and at  t h e  same time have r a i sed  a number of newproblems whose 
so lu t ions  requi re  t h e  most accurate da t a  on t h e  state of t h e  upper atmosphere 
and outer  space. Experimental da t a  are a l s o  of s c i e n t i f i c  importance s ince  
they  a r e  t h e  s t a r t i n g  po in t  f o r  t h e  development of many sciences whose function 
i s  t o  study t h e  r e g u l a r i t i e s  of processes and phenomena occurring i n  t h e  atmos
pheres of p l ane t s  and a t  various d is tances  from t h e  sun (geopmsics,  meteorology, 
space physics, s o l a r  physics,  e t c . ) .  It i s  espec ia l ly  necessary t o  po in t  ou t  
t h e  p r a c t i c a l  and s c i e n t i f i c  value of sa te l l i t e  s tud ie s  of processes occurring 
i n  t h e  atmosphere t h a t  determine t h e  weather i n  various regions of t h e  e a r t h ,  
many of which are inadequately elucidated by ordinary meteorological information 
(oceans, mountains, dese r t s ,  etc.) .  

The equipment i n  use a t  present i s  characterized by g rea t  d ive r s i ty ,  and 
i n  a number of cases t h e  measurement of one and t h e  same parameter i s  performed 
by e s s e n t i a l l y  d i f f e r e n t  instruments. 

Most authors descr ibe  instruments and measuring methods i n  varying ways 
and usually i n  a highly abridged form. I n  connection w i t h  t h i s  i t  has become 
necessary t o  describe e x i s t i n g  methods from a s i n g l e  aspect.  I n  presenting t h e  
material, spec ia l  a t t e n t i o n  w a s  paid t o  a de ta i l ed  desc r ip t ion  of t h e  bas ic  
fundamentals and p o t e n t i a l i t i e s  of t h e  various measuring methods and t o  t h e  
procedure and apparatus used. 

.The l imi ted  volume of da ta  and sometimes the  absence of necessary materi’al 
prevented t h e  author from examining some of t h e  presented problems w i t h  t h e  & 
des i red  completeness, e spec ia l ly  with respect t o  evaluating t h e  accuracy of t h e  
methods and instruments employed. 

I n  this book a l l  s p e c i f i c  da t a  and c h a r a c t e r i s t i c s  of measuring ins t ru
ments, rockets, and space vehic les  are based on material f r o m t h e  Soviet and 
foreign l i t e r a t u r e  which, f o r  convenience, i s  broken down i n t o  Chapters. 

The author expresses his s incere  thanks t o  Candidates of Technical 
Sciences G.M.Zabrodskiy, N.F.Pavlov, N.A.Petrov, and Candidate of Physico-
Mathematical Sciences A.A.Pokhunkov f m  t h e i r  valuable advice on improving t h e  
manuscript . 
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METFDDS OF INVESTIGATING THE A'TNOSPHEB3 WITH 
ROCKETS AND SATELLITES 

Numerous methods of inves t iga t ing  t h e  upper atmosphere by 
s c i e n t i f i c  rockets  and s a t e l l i t e s ,  including ionosphere 
sounding probes, meteorological rockets, o rb i t i ng  geo
physical  and s o l a r  observator ies  of t h e  USSR and USA are 
described i n  d e t a i l ,  and underlying physical  p r inc ip l e s  
are reviewed, with wiring diagrams and tabulated da ta  
on the  instrumentation capsules used. Photographic, 
telemetry,  and t e l e v i s i o n  onboard and ground equipment 
i s  discussed, with s p e c i f i c  reference t o  achievements 
on various unmanned and manned s a t e l l i t e  and space probe 
se r i e s .  Over 350 references.  

INTRODUCTION 3+ ,& 

The most important f ea tu re  of t h e  ear th ' s  atmosphere i s  the  inhomogeneity 
of  i ts  basic proper t ies  i n  a v e r t i c a l  d i rec t ion ,  characterized by such para
meters as temperature, gas composition, density,  pressure,  e l e c t r i c  and magnetic 
f i e l d  s t rengths ,  i n t e n s i t y  and composition of corpuscular or electromagnetic 
rad ia t ions  passing through it, e t c .  

I n  developing measurement methods it must be taken i n t o  account t h a t ,  i n  
the  atmosphere, both pressure and dens i ty  decrease with a l t i t u d e  and t h a t  t h e  
upper l aye r s  are ionized and i n  a plasma s t a t e .  Furthermore, it i s  necessary 
t o  remember t h a t  a t  great  a l t i t u d e s  convective and molecular heat t r a n s f e r  i s  
small and radiant  heat f luxes  acquire  the  major r o l e  here. 

A t  heights of several  thousand kilometers, t he  upper atmosphere gradually 
passes  over i n t o  space. T h i s  t r a n s i t i o n  ends at a d is tance  of severa l  t e n s  of 
thousands of kilometers (20 - 40,000 km), and on the  dark s ide  of t h e  e a r t h  t h e  
extent  of t h e  atmosphere and of t h e  t r a n s i t i o n  l a y e r  i s  g r e a t e r  than on t h e  s ide  
i l luminated by t h e  sun. 

7, 


Numbers i n  the  margin i n d i c a t e  paginat ion i n  t h e  o r i g i n a l  foreign text. 
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I n  space, i n  add i t ion . to  a gas component of extremely low dens i ty  (from 
100 t o  1i o n  p e r  an3) t h e r e  i s  a l s o  a dus t  component (micrometeors and i n t e r 
planetary dus t ) ;  fluxes of corpuscular s o l a r  r a d i a t i o n  f l y  by with various 
p a r t i c l e  v e l o c i t i e s  and d i f f e r i n g  d e n s i t i e s  ( s o l a r  Wind). T h i s  i s  accompanied 
by changes i n  t h e  e l e c t r i c  and magnetic f i e l d s .  Beyond t h e  ear th ' s  atmosphere, 
a l s o  fluxes of primary cosmic rays are encountered which, i n t e r a c t i n g  with t h e  
gas p a r t i c l e s  of t h e  upper atmosphere, produce cosmic showers extremely r i c h  i n  
various p a r t i c l e s .  

The r ad ia t ions  pene t ra t ing  and ion iz ing  t h e  upper atmosphere are thus  i t s  
most important components, and t h e  measurement of t h e i r  parameters i s  one 'of t h e  
major problems i n  studflng t h e  upper atmosphere and space. Here, we a l s o  en
counter t h e  problems of i nves t iga t ing  t h e  r ad ia t ion  b e l t s  surrounding t h e  ear th ,  
mainly outside t h e  atmosphere. 

The treatment of t h e  upper atmosphere as a s p e c i a l  a r ea  i s  convenient not 
only because of t h e  p e c u l i a r i t i e s  of i t s  phys ica l  p r o p e r t i e s  but a l s o  because 
of t h e  spec i f i c s  of t h e  inves t iga t ion  methods used. L i f t i n g  t h e  measuring 
equipment t o  t h e  necessary a l t i t u d e s  can be accomplished only by rockets as 
such or by capsules launched by rockets. Capsules, carrying instrumentation and 
serv ice  equipment, which a r e  in se r t ed  i n t o  s a t e l l i t e  o r b i t s  o r  placed on t h e  
t r a j e c t o r y  of i n t e rp l ane ta ry  f l i g h t s ,  are known as space vehicles ( S V ) .  The 
basic c h a r a c t e r i s t i c s  of rockets and S V  as w e l l  as information on t h e  measured 
parameters are given i n  Chapter I. 

To date,  numerous extremely d iverse  measurements have been made a t  various 
d is tances  from t h e  ear th ,  i n s i d e  t h e  geomagnetic f i e l d  and outside it as w e l l  as 
c lose  t o  t h e  moon and p l ane t s  wi th in  t h e  s o l a r  system. These measurements are 
pr imar i ly  of a research nature. I n  t h e  fu ture ,  they dl1be continually im
proved and ca r r i ed  out on an ever l a r g e r  scale.  I n  p a r t i c u l a r ,  i n t e r n a t i o n a l  
collaboration of s c i e n t i s t s  should f u r t h e r  this p ro jec t .  

An i n t e r n a t i o n a l  program of s tud ie s  of t h e  upper atmosphere and space was 
worked out as e a r l y  as during prepara t ion  f o r  launching t h e  f i r s t  s a t e l l i t e s  
during t h e  In t e rna t iona l  Geophysical Year ( I G Y ) .  T h i s  program ca l l ed  f o r  study
ing: 

Ul t rav io le t  and X-radiations of t h e  sun. 
Variations and composition of primary cosmic rad ia t ion .  
Concentration of p a r t i c l e s  i n  t h e  upper atmosphere and in te rp lane tary  
plasma. 
Temperature and dens i ty  of t h e  upper atmosphere. 
Streams of micrometeors. 
Radiation balance of t h e  earth-atmosphere system. 
Dis t r ibu t ion  and formation of t h e  ea r th ' s  cloud cover. 
Magnetic and e l e c t r i c  f i e l d s  c lose  t o  t h e  e a r t h  and i n  space. 
Radiation dose and temperature conditions wi th in  s a t e l l i t e s .  
Propagation of rad io  waves of various ranges. 
Corpuscular f l uxes  and low-energy p a r t i c l e s .  
Radiation b e l t s  of t h e  ear th .  
Development of s t r u c t u r a l  elements of rocke ts  and space vehicles,  
f l i g h t  c o n t r o l  systems, instrumentation, and o the r  equipment. 
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The main purpose of t h e  program, as we see, was t o  study t h e  s t ruc tu re  of 
t h e  ear th ' s  atmosphere and t h e  pl-qsical phenomena taking p l ace  the re  as w e l l  as 
t o  obta in  da ta  f o r  solving p r a c t i c a l  problems of meteorology, as t ronaut ics ,  
radio communications and o the r  areas of science and technology. Work according 
t o  a s imi l a r  program i s  s t i l l  continuing, i n  p a r t i c u l a r  wi th  t h e  launchings of 
t h e  "Cosmos" s e r i e s  of satell i tes as was s t a t e d  i n  t h e  TASS repor t  onMarch 16, 
1962. 

During t h e  first launchings of space vehic les  t o  t h e  moon and p l ane t s  of 
t h e  s o l a r  system, t h e  mission programs were  extended by p r o j e c t s  of inves t iga t ing  
t h e  p lane tary  and luna r  atmospheres and studying t h e i r  surfaces.  The broad 
study program f o r  t h e  upper atmosphere and space w i l l  be continued i n  t h e  fu ture ,  
at least f o r  t h e  dura t ion  of t h e  In t e rna t iona l  Years of t h e  Wet Sun ( I G Y )  
(from January 1, 1964.t o  December 31,1965). 

Measurement of t h e  necessary parameters of t h e  upper atmosphere and space 
forms t h e  bas i s  f o r  performance of s tud ie s  r e l a t i v e  t o  most of t h e  objec t ives  
of t h e  program. The scope of t hese  parameters, as ind ica ted  by t h e  research 
program, i s  extremely broad. 

The instrumentation must operate under t h e  spec i f i c  conditions of t h e  upper 
atmosphere o r  space and, furthermore, must s a t i s f y  t h e  spec ia l  operating condi
t i o n s  i n  rockets or space vehicles ( l a r g e  l i n e a r  and v ibra tory  g-forces, e f f e c t  
of rad ia t ions ,  per turba t ions  of t h e  ambient medium c lose  t o  t h e  rap id ly  moving 
instrument module, e tc . ) .  I n  c,onnection wi th  this, t h e  d iverse  measuring equip
ment used f o r  t h e  inves t iga t ions  must have a nmber  of common proper t ies ,  in
cluding s u f f i c i e n t l y  low i n e r t i a ,  high operating r e l i a b i l i t y ,  da t a  transmission 
by telemetry, l imi ted  weight and s i z e ,  cos t  e f fec t iveness ,  e t c .  

The measurement technique a l s o  i s  of a spec i f i c  character.  The main purpose 
i s  t o  a c c o q l i s h  measurements of various parameters w i t h  minimal d i s to r t ions ,  
a t  maximal allowance f o r  irremovable influences.  Therefore, measurements of t h e  
parameters of t h e  upper atmosphere and space frequently have t h e  nature of de l i 
ca te  physical  experiments ca r r i ed  out by automatic instruments under t h e  complex 
f l i g h t  conditions of t h e  instrument capsule. 
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PART I /8 
INSTRWW CAPSULES AND ENVIRONMEXTAL DISTURBANCES 

To increase  t h e  r e l i a b i l i t y ,  t h e  instrumentat ion i s  housed i n  spec ia l  air
t i g h t  containers  which are designed t o  o f f e r  p ro tec t ion  from such f ac to r s  as 
vacuum, cosmic and s o l a r  radiat ion,  meteors, e t c .  

The receiving devices of many measuring instruments a r e  i n s t a l l e d  outs ide 
t h e  capsule a t  po in t s  where d i s t o r t i o n s  of t h e  measured parameters, caused by 
the  h5gh ve loc i ty  and outgassing of t h e  capsule, as well as by i t s  e l e c t r i c  and 
magnetic f i e l d s ,  are minimal. To el iminate  d i s t o r t i o n s  caused by t h e  launch 
vehicle,  t h e  instrument capsules are usual ly  separated from t h e  rocket a t  a pre
determined height. The various types of launch vehicles  for instrument capsules 
d i f f e r  i n  f l i g h t  t r a j e c t o r i e s  and i n  scope of t h e  problems t o  be solved. 

To measure t h e  parameters of t h e  upper atmosphere up t o  comparatively low 
a l t i t u d e s  (50- 150 Ism), small rockets with nonseparable capsules a r e  used, 
known as meteorological rockets.  The endeavor t o  conduct systematic and 
mult iple  measurements by means of meteorological rockets l ed  t o  t h e i r  develop
ment i n  t h e  d i r ec t ion  of m a x i m a l  sinq?licity and economy. Meteorological rockets 
are widely used i n  t h e  USA, USSR, France, Japan, England, and o ther  countries.  

I n  t h e  Soviet Union, t h e  b l a s to f f  of separable instrument capsules t o  grea t  
a l t i t u d e s  i s  accomplished by powerful rockets known as geophysical rockets.  
Multistage rockets, f o r  t h e  most p a r t  with i n t e g r a l  capsules, known as research 
rockets, are used i n  o ther  countr ies  f o r  measurements a t  a l t i t u d e s  above 
100 - 150 Ism. 

space vehicles  - s a t e l l i t e s  and in t e rp l ane ta ry  s t a t i o n s  - a r e  used as A 
c a r r i e r s  of instruments intended for measuring t h e  parameters of near-earth and 
far-out space, and a l s o  of instruments f o r  i nves t iga t ing  t h e  atmospheres of 
p lane ts  and f o r  obtaining t h e i r  images. 

The d i v e r s i t y  of t h e  already developed instrumentation c a r r i e r s ,  espec ia l ly  
of space vehicles,  i s  extensive and i s  continuously expanding. 

Par t  I of the  book gives  a br ie f  descr ip t ion  of t h e  most widely used car
riers, with main anphasis on t h e  cha rac t e r i s t i c s  of t h e  instrumentation complex. 

CHAPTER I 

TYPES OF INSTRWTATION CAPSULES 

Section 1. Meteorological Rockets 

The worldts first meteorological rocket (Type 06) was  designed i n  19% by 



a group of t h e  Osoaviakhime (Society f o r  t h e  Assistance t o  Defense and Aviation-
Chemical Construction) of t h e  USSR and was launched on Apri l  11, 1937. The 
rocket reached a height of 4.500 m. Subsequently the re  were  several o ther  launch
ings  of t h e  Type 06 rocket (Bibl.19). 

Systematic inves t iga t ions  of t h e  upper atmosphere by m e a n s  of meteorological 
rockets  were begun i n  t h e  USA and USSR only after t h e  end of t h e  Second World 
War. 

The Soviet meteorological rocket i s  intended t o  measure t h e  s t r u c t u r a l  
parameters of t h e  atmosphere (temperature and pressure)  up t o  heights  of 
80 - 100 lan. It has a length  of 7000 mm (without t h e  engine starter), t o t a l  
weight with f u e l  680 kg, diameter of t h e  cy l ind r i ca l  p a r t  4-35 m, and tail span 
of 1200 mm (Bibl.2). 

The nose cone of t h e  rocket (Fig. l . I ) ,  representing t h e  instrument con
t a ine r ,  i s  equipped with a forward-projecting t h i n  boom (740 mm long, p r i n c i p a l  
diameter 20 mm) t o  which t h e  receiving devices of t h e  measuring instruments are 
mounted. It i s  divided i n t o  th ree  equipment bays, has a length  of 1953 mm, a 
diameter of t h e  cy l ind r i ca l  p a r t  of 4.35 mm, and a weight wi th  equipment of 
72 kg (Bibl.2). 

The f irst  compartment contains a membrane manometer u n i t  (MMU) (3) whose 
in t akes  a re  located on t h e  boom, a mechanical commutator (6)  f o r  t h e  telemetry 
system of t h e  rocket,  and chemical power sources ( b a t t e r i e s )  (7) ;  t h e  second 
compartment c a r r i e s  t h e  rad io  rece iver  (4) of t h e  telemetry system and photo
graphic apparatus (8 ) ;  t h e  t h i r d  compartment serves f o r  housing parachutes t o  
re turn  t h e  nose t o  ear th .  

The forward p a r t  of t h e  boom contains two s m a l l  thermal manometers (1). I n  
t h e  ceriter sect ion,  four  wire res i s tance  thermometers ( 5 )  f o r  measuring t h e  
temperature of t h e  atmosphere are s t re tched  on steel  corner p l a t e s ,  and t h e  /10
temperature of t h e  boom i t se l f  i s  measured by a thermometer wound on it. A t  t h e  
base of t h e  boom, there  are four  bolometers (2)  which measure t h e  i n t e n s i t y  of 
rad ian t  energy a f f ec t ing  t h e  thermometer readings. 

The measuring c i r c u i t s  of t h e  thermometers and manometers are Wheatstone 
bridge c i r c u i t s  with a common power supply. By means of t h e  commutator, t h e  
output vol tages  of a l l  c i r c u i t s  are a l t e r n a t e l y  f ed  t o  t h e  inpu t  of t h e  t rans
mitter whose s igna l s  are frequency-modulated. The ground-based rece ivers  are 
equipped with cameras f o r  f i lming t h e  s igna l s  f r o m t h e  scope of a cathode-ray 
tube.  The radio-telemetry system of t h e  rocket  i s  pe r iod ica l ly  ca l ibra ted  wi th  
respect  t o  frequency by t ransmi t t ing  con t ro l  s igna l s  a t  t h e  start of each cycle.  
The cont ro l  s igna ls  are generated by connecting t h e  bridge c i r c u i t ,  comprised 
of highly s t a b l e  r e s i s t o r s ,  t o  t h e  input  of t h e  transmitter. 

The rocket i s  launched from a launching tower with spiral rails. On burn
out  of t h e  booster motor t h e  ve loc i ty  of i ts almost v e r t i c a l  ascent  ( zen i th  
angle  about 5') exceeds 100 m/sec, and on burnout of t h e  l iqu id  rocket engine
(LRE) t h e  ve loc i ty  i s  more than  1000 m/sec ( B i b 1 . a ) .  

Separation of t h e  rocket  nose from t h e  body and e j e c t i o n  of t h e  recovery 
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Fig.l.1 Nose Cone of Meteorological Fig.2.1 Aerobee-E Type Rocket. 
Rocket 1- Nose cone; 2 - Oxygen cylinder;

3 - Fuel; 4 - Booster motor. 
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parachute take  place at  an a l t i t u d e  of about 70 km. T h i s  imparts addi t iona l  
accelerat ion t o  t h e  rocket nose which i s  boosted t o  a height of 80 - 100 km and 
then begins t o  f a l l  back. A t  an a l t i t u d e  of 50 - 60 km the  descent veloci ty ,  
as a result of parachute braking, drops t o  about 100 m/sec, becoming 5 - 6 m/sec 
close t o  t h e  earth’s surface (Bibl.2). The use of parachutes lengthens t h e  
residence time of t h e  instruments i n  t h e  atmosphere and penni t s  repeated re-use 
of t he  same rocket thus increasing t h e  cos t  e f fec t iveness  of sounding missions. 

The f l i g h t  of meteorological rockets  i s  tracked by o p t i c a l  and radar  
methods. 

I n  the  USA, meteorological rockets  are i n  use t h a t  operate both on l i q u i d  
and so l id  propel lants .  The former include t h e  widely used rockets of t h e  
Aerobee type and i t s  various modifications, and t h e  l a t te r  include rockets of 
t h e  Deacon, Nike-Cajun, Loki, e tc .  type (Bibl.9. 20, 21, 22, 28). The ins t ru
mentation of most rockets va r i e s  as a funct ion of t h e  intended mission. 

Small single-stage s o l i d  rockets with a maximum a l t i t u d e  of 50 - 80 km are 
most f requent ly  used f o r  meteorological purposes. They carry instruments f o r  
measuring pressure,  humidity, density,  atmospheric wind, and a l so  f o r  measuring 
s o l a r  rad ia t ion  fluxes and rad ia t ion  of t h e  earth-atmosphere s y s t e m .  

Measurements of various parameters of t h e  upper atmosphere are car r ied  out 
i n  conformity with t h e  prescribed program on mult is tage research rockets  with /12 
a maximum a l t i t u d e  of severa l  hundreds of kilometers, and onboard equipment f o r  
space vehicles  i s  a l s o  being developed. 

The basic  multipurpose (research and sounding) rocket of t h e  USA, especial
l y  during t h e  IGY, was t h e  Aerobee-K (Fig.2.I). The Aerobee-Hi rocket has a 
main l i q u i d  engine and a s o l i d  booster motor. Its length,  includin t h e  booster, 
i s  9.2 m, diameter 381 mm, payload 54 - 91 kg, t o t a l  weight 925 kg fBibl.24). 

On burnout of t h e  l i q u i d  engine ( a t  a height of about 40 km) t h e  rocket 
veloci ty  reaches i t s  maximum (2030 m/sec), corresponding t o  a maximum height 
of 265 km (Bib1 .a) .  The ce i l i ng  of t h e  rocket d i f f e r s  i n  o ther  var iants .  

After re-entry of t h e  rocket (at an a l t i t u d e  of about 6 km), t h e  nose cone 
with the  instrumentation separates  and descends by parachute (Bibl.21, 24). As 
t h e  rocket passes through t h e  dense l a y e r s  of t h e  atmosphere t h e  instrument 
capsule i s  heated t o  a temperature of about 150 - 160’ (Bibl.20). 

The two-stage s o l i d  sounding rocket of t h e  Nike-Cajun c l a s s  whose prototype 
i s  t h e  surface-to-air air defense missile Nike, has found wide use f o r  pr imari ly  
measuring atmospheric pressure,  composition, and dens i ty  (based on t h e  f a l l i ng -
b a l l  method). T h i s  system has almost t h e  same l i f t o f f  weight (about 700 kg) as 
t h e  Aembee but has a lower ce i l ing .  

It should be noted t h a t  t h e  ra ted  G f o r c e s  of t h e  onboard equipment of t h e  
nose sec t ion  of t h e  Cajun rocket are ra the r  high. The m a x i ”  i s  70 g and more 
which i s  typ ica l  f o r  s o l i d  rockets,  whereas t h e  G f o r c e s  f o r  l i q u i d  rockets  are 
not more than 6 - 8 g (Bibl.24) . 
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Sect ion 2. C a D s u l e s  of Geophysical Rockets 

Geophysical rockets  have been used i n  t h e  USSR s ince  1949 (Bibl.19). Their  
instrumentation capsules are detachable from t h e  rockets  and are recovered by 
parachute. The instrumentation complex i s  not  standardized and i s  determined 
by t h e  research mission o r  program. The cy l ind r i ca l  unoriented capsule i s  
housed i n  a mortar a t tached t o  t h e  side of t h e  rocket,  and a t  a spec i f ied  height 
i s  e jec ted  from it at  l o w  ve loc i ty  ( B i b l . 1 ) .  

The capsule (Fig.3.I) has four  e+ ment bays: t h e  parachute compartment 
(1);t h e  center,  openwork compartment ( 2P carrying t h e  pickup devices of t h e  
instruments f o r  inves t iga t ing  t h e  atmosphere; t h e  a i r t i g h t  instrument compart
ment (3) housing t h e  photographic recording device, con t ro l  un i t s ,  and measuring 
c i r c u i t s  of t h e  instruments;  and the  nose compartment ( 5 )  i n  which t h e  b a t t e r i e s  
are i n s t a l l e d .  The ear th ' s  surface,  cloud cover, and surrounding space are /13
photographed through t h e  portholes  (4)  t o  f i x  t h e  pos i t i on  of t h e  capsule which 
executes a complex r o t a t i o n a l  motion wi th  a e r iod  of several t ens  of seconds 
( B i b l . 1 ) .  To the  s ide  of t h e  compartment ( 6P a pol ished metal p l a t e  (7 )  f o r  re
cording t h e  %act of micrometeors i s  attached: The openwork compsrtment (2)  
houses devices (8)  and ( 9 )  f o r  pressure measurements a t  a l t i t u d e s  up t o  200 km 
and f o r  a i r  sampling up t o  110 km. 

. 1.-

Fig.3.I Geophysical Automatic Capsule and i t s  Equipment. 

The parachute automatically deploys at a height of about 2 hn above t h e  
ear th 's  surface.  After landing, t h e  capsule i s  maintained i n  a v e r t i c a l  posi
t i o n  by booms at tached t o  t h e  nose compartment. A nose shock absorber i s  used 
t o  sof ten  t h e  ground impact. High-altitude geophysical s t a t ions  (HGS) which are 
s t i l l  i n  wide use were developed during t h e  I G Y  f o r  measurements requir ing 
steady o r i en ta t ion  of t h e  instrument capsule i n  space (Bib l .5) .  

The HGS cons is t s  of a spher ica l  capsule equipped with automatic a t t i t u d e  
controls  and gyro s t a b i l i z e r s .  The p o s s i b i l i t y  of using such capsules f o r  opti
c a l  measurements i n  a broad spec t r a l  range i s  a prime requirement. For this, 
the  capsule serving as a high-alt i tude o p t i c a l  s t a t i o n  (HOS), i s  equipped with 
portholes.  

The HGS (Fig.k.I), j u s t  as t h e  HOS, has a diameter of 1m and cons is t s  of 
two duralumin hemispheres (1)and (2)  (ha l f - she l l s ) .  The half-shel ls  are rein
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forced on t h e  in s ide  by s t r i n g e r s  and r i b s  and a r e  highly polished on the  /u,
oiitsi.de. Along t h e  equator of t h e  lower half-shel l  a shape2 r ing  (equator ia l  
band) i s  welded (3) t o  form an a i r t i g h t  connection between t h e  half-shells.  
Close t o  the  equator ia l  band, t h e  lower hemisphere c a r r i e s  two rod antennas of 
t h e  telemetry system. These are not r e t r ac t ed  when t h e  s t a t i o n  i s  i n s t a l l e d  i n  
the  nose sec t ion  of t h e  launching rocket. I n  i t s  equator ia l  plane, t h e  s t a t i o n  
i s  provided with a platform t o  which t h e  power source and t h e  main equipment a r e  
mounted. In  one var ian t  of t h e  high-alt i tude op t i ca l  s ta t ion ,  standard 80-mm 
portholes  with flanges,  t o  which o p t i c a l  instruments are attached, are welded t o  
the  upper and lower half-shel ls .  

Fig.4.I Schematic Diagram of t he  High-Altitude 
Geopbs ica l  Stat ion.  

Before launching, t h e  e n t i r e  equipment i s  fastened t o  t h e  half-shel ls  and 
t o  t h e  platform. The s t a t i o n  i s  t e s t ed  for a i r t igh tness ,  r insed with an i n e r t  
gas stream (ni t rogen) ,  and f i l l e d  with this gas t o  a pressure of 1.5 a t m ,  which 
prevents explosion of t he  gases l i be ra t ed  during operation of t he  power sources 
and regulates  t he  temperature within the  s t a t ion .  

The automatic a t t i t u d e  cont ro l  s y s t e m  of t he  capsule i s  based on t h e  gyro
scopic e f f e c t .  A power gyroscope (4),actuated by an e l e c t r i c  motor (6) with 
t h e  tachometer (7 )  over t h e  reducing gear (5)  ensures constancy of t h e  v e r t i c a l  
u roscope  a x i s  during free f l i g h t  of t h e  s t a t ion .  During normal operation, /15
the  s t a t i o n  i s  or iented with respect t o  a prescribed azimuth by rough a t t i t u d e  
sensors within an accuracy up t o  *3' and maintains or ien ta t ion  with an accuracy 
t o  *0.5', then t h e  f i n e  a t t i t u d e  sensors are brought i n t o  ac t ion  (Bibl.5). 

During t h e  f l i g h t  of t h e  s t a t ion ,  t h e  angles of p i tch ,  yaw, and roll are 
transmitted by t h e  telemetry system. For transmission of this information three  
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mutually perpendicular s m a l l  gyroscopes equipped with potentiometer p ickoffs  
are i n s t a l l e d  on t h e  s t a t ion .  

To cont ro l  t h e  pos i t i on  of t he  s t a t i o n  axes r e l a t i v e  t o  t h e  sun and t e r 
restrial  horizon, o p t i c a l  instruments SIPS ( s o l a r  halo and pos i t i on  sensor) and 
CPS (capsule pos i t ion  sensor) are i n s t a l l e d  on board. An all-sky camera (ASC) 
i s  mounted on t h e  s t a t i o n  f o r  cont ro l  observations of t he  type and character  of 
t h e  disk of t he  p lane t .  The temperature i n  various p a r t s  of t h e  s t a t i o n  i s  
measured by e l e c t r i c  thermometers (ET). The atmospheric pressure a t  t h e  boundary 
l a y e r  of t h e  capsule i s  measured by ion iza t ion  and e l e c t r i c  discharge gages. 

Launching of t h e  rocket,  carrying t h e  s t a t i o n  i n  i t s  nose cone, i s  done s o  
as t o  maintain a given d i r ec t ion  with respect  t o  azimuth and elevat ion.  The 
s t a t i o n  i s  separated from the  rocket at an a l t i t u d e  of 65 - 67 lan, and af ter  
fall-away of t h e  p ro tec t ive  cone t h e  s t a t i o n  i s  ejected from a recess,  being 
given an addi t iona l  ve loc i ty  of about 1m/sec. The s t a t i o n  then moves as far as 
1km away from the  rocket.  A t  t he  moment of separat ion t h e  automatic a t t i t u d e  
cont ro l  system begins t o  operate.  Usually, a f t e r  10 - 20 sec t h e  s t a t i o n  wi l l  
have i t s  prescribed pos i t ion .  Operation of t h e  a t t i t u d e  sensors ceases a f t e r  
t h e  s t a t i o n  reaches t h e  t r a j e c t o r y  peak where it starts f a l l i n g  back i n t o  t h e  
denser l aye r s  of t h e  atmosphere, a t  an a l t i t u d e  of about 40 km. In  the  lower 
l aye r s  of t h e  atmosphere t h e  s t a t i o n  falls  a t  a ve loc i ty  of 170 - 180 m/sec 
(Bibl.5). 

Geophysical capsules a r e  provided with devices f o r  measuring the  rad ia t ions  
of t h e  sun and of t h e  earth-atmosphere system, concentration and f luxes  of 
charged p a r t i c l e s ,  composition of t h e  upper atmosphere, pressure up t o  a l t i t u d e s  
of 200 km, e l e c t r i c  and magnetic f i e l d s ,  streams of micrometeors; biomedical in
ves t iga t ions  were a l s o  car r ied  out i n  conformity with t h e  programs of t h e  IGY 
and IQSY (Bibl.1). 

Section 3 .  Space Vehicles 

Based on t h e  type of f l i g h t  t r a j ec to ry ,  space vehicles  ( S V )  a r e  divided 
i n t o  . a r t i f i c i a l  e a r t h  s a t e l l i t e s  ( AES) and automatic in te rp lane tary  s t a t ions  
(AIS). S a t e l l i t e s  carrying a l a rge  va r i e ty  of equipment f o r  s c i e n t i f i c  inves t i 
gat ions a r e  known as o rb i t i ng  observatories or s c i e n t i f i c  space s t a t ions .  

The t o t a l  of onboard equipment of space vehic les  can be subdivided i n t o  /16
t h e  following groups with respect  t o  purpose: 

1. Equipment f o r  measurements i n  t h e  upper atmosphere and space, i n  
conformity with a prescribed program. 

2. 	 Radiotelemetry equipment, including data-storage capabi l i ty .  T h i s  
equipment s t o r e s  i n f o m a t i o n  obtained from a l l  measuring instruments, 
including those cont ro l l ing  t h e  operat ion of t h e  various devices, and 
t ransmits  it t o  t h e  ground-based receiving s t a t ions .  

3.  Radio equipment t o  determine t h e  motion parameters.
4. Control equipment, including programing and cont ro l  devices. 
5. E f e  support equipment f o r  t h e  crew and devices ensuring operat ional  

r e l i a b i l i t y  of t h e  onboard equipment. The heat-regulating system 

10 




r 


(HRS) i s  one of t h e  most important devices of this type.
6. 	Equipment f o r  a t t i t u d e  con t ro l  and s t a b i l i z a t i o n  of t h e  space vehicle 

and f l i g h t  con t ro l  ( t r a j e c t o r y  correction, e t c  .).
7. E lec t r i c  power sources. 

The instrumentation and i t s  serv ice  equipment are prescr ibed  by t h e  mission 
programs and t h e i r  arrangement outs ide  and i n s i d e  t h e  capsule i s  determined by 
t h e  nature of t h e  equipment. Below, we give a b r i e f  desc r ip t ion  of a space 
vehicle by means of which t h e  most important s c i e n t i f i c  results were  obtained. 

The launching of t h e  first three satell i tes i n  t h e  USSR was  done i n  accord-
a c e  with t h e  program of t h e  IGY, and t h e  e n t i r e  program of measurements was 
already f u l f i l l e d  with t h e  third satell i te.  

The world's first a r t i f i c i a l  e a r t h  s a t e l l i t e  launched i n  t h e  USSR on 
October 4,1957 had t h e  shape of a sphere [580 mm i n  diameter weighing 83.6 kg 
( B i b l . l ) l  with four  mutually perpendicular rod antennas. The satel l i te  was  
equipped w i t h  a heat-regulating system, a system f o r  measuring t h e  temperature 
of t h e  s t r u c t u r a l  components and t h e  i n s i d e  pressure,  two rad io  t r ansmi t t e r s ,  
and chemical power sources (Bib1.1). 

The second s a t e l l i t e  (November 3, 1957) was  t h e  last  s tage  of t h e  launching 
rocket. I n  th ree  separate capsules, it contained measuring equipment and a l s o  
t h e  experimental animal, t h e  dog Iaika.  Measurements of u l t r a v i o l e t  rad ia t ion ,  
X-rays, and cosmic rad ia t ion ,  as w e l l  as inves t iga t ions  of t h e  ionosphere and 
biomedical experiments were ca r r i ed  out on t h e  s a t e l l i t e .  The temperature in
s ide  and on t h e  surface of t h e  AES was measured (Bibl.9). 

Fig.5.I S c i e n t i f i c  Equipment of T h i r d  Soviet 
A r t i f i c i a l  Earth S a t e l l i t e .  

The third sa te l l i t e  (May 15, 1958) ca r r i ed  d i f f e r e n t  and improved equip- /17 
ment (Fig.5.1). The t o t a l  weight of t h e  satel l i te  was 1327 kg, and t h e  weight 
of t h e  s c i e n t i f i c  and measuring equipment toge ther  with t h e  power sources was 
968 kg (Bibl.1, 9). The instrumentation of t h e  satel l i te  included a magneto
meter (I), equipment f o r  measuring corpuscular solar fluxes (2), an  in s t ru 
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ment (4) f o r  recording photons i n  cosmic rays, magnetic and ion iza t ion  gages (5),
i o n  t ra  s (6), e l e c t r o s t a t i c  fluxmeters ( 7 ) ,  a m a s s  spectrometer (8) ,  an  in s t ru 
ment (9P f o r  recording heavy nuclei ,  a device (10) f o r  measuring t h e  i n t e n s i t y  
of cosmic rad ia t ion ,  and equipment (11)f o r  recording micrometeors. Electro
chemical sources i n s i d e  t h e  satell i te casing and s o l a r  c e l l s  (3 )  were used as 
power sources. 

The Soviet space rocke ts  launched t o  t h e  moon on January 2, September 12, 
and October 4, 1959 were t h e  last s tages  of t h e  launching rockets from which t h e  
space vehicle was separated. The space vehic le  of t h e  first and second rockets 
was an a i r t i g h t  sphe r i ca l  container made of aluninum a l loys .  It car r ied  scien
t i f i c  equipment f o r  measuring t h e  magnetic f i e l d ,  cosmic rad ia t ion ,  concentra
t i o n  of charged p a r t i c l e s  i n  t h e  ambient plasma, and micrometeors. 

The capsule of t h e  first rocket passed a t  a d is tance  of 5 - 6000 km from 
t h e  moon, and t h e  second descended t o  t h e  lunar surface having on board a pen
nant with an image of t h e  emblem of t h e  USSR and t h e  in sc r ip t ion :  "USSR, 
September, 1959 . l l  

The space vehic le  of t h e  t h i r d  rocket was an unmanned in t e rp l ane ta ry  sta
t ion ,  made i n  t h e  form of a cy l ind r i ca l  capsule with spher ica l  bottoms. The 
maximal length of t h e  AIS was 1.3 m, t h e  maximum t ransverse  dimension was 1.2 m, 
and it weighed 278.5 kg (Bibl.1, 9 ) .  One of t h e  most important problems t o  /18
be solved upon launching of this s t a t i o n  was t o  obta in  photographs of t h e  far 
s ide  of t h e  moon and t o  t ransmi t  them by t e l e v i s i o n  apparatus t o  t h e  ear th .  

F'ig.6.1 Unmanned In te rp lane tary  S t a t i o n  Mars-1. 

The i n s e r t i o n  i n t o  in t e rp l ane ta ry  t r a j e c t o r i e s  of AIS t o  t h e  p l ane t s  Venus 
and Mars was accomplished i n  t h e  USSR by a guided space rocket launched from 
heavy a r t i f i c i a l  e a r t h  s a t e l l i t e s .  

The in t e rp l ane ta ry  s t a t i o n  ( IS )  launched toward Venus on February 12, 1961 
had a weight of 643.5 kg, length of 2.035 m, and diameter of 1.05 m. This Venus 
probe was a space vehic le  equipped wi th  a complex of rad io  engineering and scien
t i f i c  devices, an o r i e n t a t i o n  and con t ro l  system, program devices, heat
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regula t ing  system, and power sources. I n  design it was made i n  t h e  form of a 
cy l ind r i ca l  a i r t i g h t  capsule carrying, on t h e  instrument frame, t h e  instrumenta
t i o n  and t h e  buffer storage.  The work program of t h e  equipment included a check 
on extreme-range rad io  communication, measurements of cosmic rad ia t ion ,  micro-
meteor streams, magnetic f i e l d  strength,  concentration of charged p a r t i c l e s  i n  
t h e  i n t e rp l ane ta ry  plasma and i n  corpuscular f luxes  (Bibl.1). 

The in t e rp l ane ta ry  probe Mars-1 (October 1, 1962) had a weight of 893.5 kg 
and a maximal length of 3.3 m (Fig.6.1). The diameter of t h e  capsule was 1.1m 
and t h e  width, with consideration of t h e  s o l a r  c e l l s  and r ad ia to r s  of t h e  heat-
regula t ing  system, was 4.0 m (Bibl.18). The s t a t i o n  was  e f f i c i e n t l y  f i t t e d  with 
a l l  necessary a u i l i a r y  and s c i e n t i f i c  equipment intended f o r  measuring t h e  
parameters of both i n n e r  and ou te r  space and i n  t h e  v i c i n i t y  of t h e  p lane t  Mars. 
One of t h e  most important problems of t h e  mission was  t o  study t h e  p lane t  i t se l f  
and t h e  p rope r t i e s  of i t s  atmosphere. 

I n  design, t h e  A I S  was made i n  t h e  form of two a i r t i g h t  compartments: orbi
t a l  and planetary.  The o r b i t a l  compartment contained equipment f o r  operating 
t h e  s t a t i o n  during t h e  f l i g h t  t o  t h e  p l ane t .  To this compartment were  attached 
a correcting motor un i t ,  solar b a t t e r y  panels, hemispherical r ad ia to r s  f o r  t h e  
heat-regulating system, and the  antenna of t h e  onboard rad io  systems. The 
p lane tary  compartment car r ied  t h e  measuring equipment designed f o r  investiga
t i o n s  near t h e  p lane t .  

The instrumentation of t h e  Mars-1 probe included a photo te lev is ion  device, 
a spectroreflexometer f o r  de tec t ing  t h e  organic cover of t h e  p lane t ,  an /19
u l t r a v i o l e t  spectrograph f o r  determining t h e  ozone content i n  t h e  Martian atmos
phere, magnetometric equipment, instruments f o r  measuring cosmic rad ia t ions ,  a 
radiotelescope operating on t h e  150 and 1500 m wavelength, equipment f o r  measur
ing meteor streams and charged p a r t i c l e  concentration over t h e  f l i g h t  t r a j e c t o r y  
and near t he  p lane t  (Bibl.18). 

During t h e  periods of rad io  communication with t h e  AIS, results of t h e  
measurements were obtained over a d is tance  of up t o  8 mil l ion  kilometers from 
t h e  ear th .  

The Soviet spaceship s a t e l l i t e s  were  launched ( t h e  f i r s t  on May 15, 1960 
and t h e  f i f t h  on March 25, 1961) f o r  t h e  purpose of operating and checking t h e  
bas i  c life-support systems i n  space and t h e  a s t r o n a u t f s  r e tu rn  t o  earth.  Bio
medical and o ther  s c i e n t i f i c  i nves t iga t ions  were a l s o  included. Measurements 
of cosmic rad ia t ions ,  X- and u l t r a v i o l e t  r ad ia t ions  of t h e  sun, and r ad ia t ion  
l e v e l s  n i t h i n  t h e  capsule were  accomplished on these  spacecraft .  

Beginning on March 16, 1962, i n  conformity w i t h  t h e  research program of t h e  
Cosmos series of satell i tes ( see  Introduction) i n  t h e  Soviet  Union, systematic 
launchings of spec ia l ized  satell i tes intended f o r  a comprehensive inves t iga t ion  
of ind iv idua l  problems took place.  Orb i t s  w i th  a per igee  of 200 - 300 km and 
apogee from 300 (Cosmos-18) t o  1600 km (cosnos-5) are c h a r a c t e r i s t i c  f o r  these.  

Valuable s c i e n t i f i c  information was obtained from t h e  1aunchLgs of t h e  
Vostok and Voskhod type spacecraf t  wi th  as t ronauts  on board. The e f f e c t  of a 
prolonged s t a y  i n  space on man and his performance was studied, numerous bio-



medical i nves t iga t ions  were performed, various auxiliary systems of t h e  S V  were 
t e s t e d  and improved, and "space sighting" was accomplished f o r  t h e  first time, 
followed by a walk i n  space by t h e  f irst  human. The launch of t h e  controlled 
maneuverable space vehic le  Polyot-I on October 1, 1963 was of g rea t  importance 
f o r  t h e  development of space s tudies .  

Ionger inves t iga t ions  of t h e  upper atmosphere and space were s t a r t e d  by 
means of t h e  s c i e n t i f i c  s t a t i o n s  Elektron-1 and Elektron-2 (January 30, 1964) 
which had t h e  mission of de t a i l ed  s t u d i e s  of t h e  i n n e r  r ad ia t ion  b e l t s  of t h e  
e a r t h  and t h e i r  phys ica l  phenomena. The experimental program of these space
c r a f t  ca l l ed  f o r  measuring t h e  f luxes  of low- and high-energy p a r t i c l e s ,  mag
n e t i c  f i e l d s ,  space rad ia t ion ,  chemical composition of i n n e r  space, short-wave 
r a d i a t i o n  of t h e  sun, rad io  emission of t h e  galaxies,  and micrometeors. These 
inves t iga t ions  were performed i n  conformity wi th  t h e  program of t h e  IGY 
(Bibl. 12) . 

Space vehic les  launched i n  t h e  USA are d is t inguished  by g rea t  d ive r s i ty .  /20 
According t o  published d a t a  (B ib l . l l )  t h e  USA had launched 122 space vehicles 
by December 31, 1962, of which 66 were f o r  s c i e n t i f i c  research, 6 f o r  l una r  
e q l o r a t i o n ,  4 were manned or ca r r i ed  animals, 16 were  f o r  surveil lance,  and 30 
f o r  military purposes. 

A brief desc r ip t ion  of t h e  US space vehic les ,  developed according t o  t h e  
research p r o j e c t s  on t h e  upper atmosphere and space, i s  given below. 

The launching program of t h e  Explorer series was s t a r t e d  on January 1, 
1958. The first American satell i tes were t h e  fou r th  s tage  of t h e  launching 
rocket. The nose cone of t h e  satel l i te  was made of s t a i n l e s s  steel. Behind i t  
was i n s t a l l e d  t h e  instrument bay which was enclosed i n  a s t e e l  cylinder 
(Bibl.10). Later (beginning with Explorer-V) t h e  satell i tes of this series were 
design-modified; f o r  example, they were given t h e  form of spheroids of aluminum 
a l loys ,  two truncated cones of f ibe rg la s s  laminate connected by t h e  base 
(Ekplorer-VII) and an i n f l a t e d  p l a s t i c  sphere [Wlorer-XIX (Bibl.11, 26, 
29, 31)j-

The w e i  h t  of t h e  s c i e n t i f i c  and measuring equipment varied from 6.3 kg 
(Explorer-JXy t o  64 kg (Ekplorer-VI). 

Missions of t h e  satell i tes of t h e  Explorer series included measurements of 
atmospheric density,  magnetic f i e l d ,  cosmic rad ia t ion ,  micrometeoroids, l o c a l  
temperatures of t h e  satellite, charged p a r t i c l e  concentration, e l e c t r o s t a t i c  
charge on t h e  sa te l l i t e  sk in  [Explorer-VI11 (Bib1.27)] f luxes  of long-wave 
r ad ia t ion  and r ad ia t ion  balance [Explorer-VI1 (Bib1.26 5 1, short-wave r ad ia t ion  
of t h e  sun and temperature of  t h e  gas  plasma. Televisioii p i c t u r e s  of t h e  
e a r t h t s  surface from a height of about 31,400 km w e r e  transmitted from t h e  
Fkplorer-VI satel l i te  (Bibl.30). The o r b i t s  of a l l  s a t e l l i t e s  of t h e  Fkplorer 
series had a l a r g e  e l l i p t i c i t y .  

S a t e l l i t e s  of t h e  Vanguard series were developed e spec ia l ly  f o r  missions 
of t h e  IGY program. It was proposed t o  launch 12  satell i tes of this series; 
however, as a consequence of launching t roub le  only t h r e e  were ac tua l ly  in se r t ed  
i n t o  o r b i t .  The satellites were made i n  t h e  form of aluminum a l l o y  spheres 



about 500 mm i n  diameter. The weight of t h e  first of t hese  was only 1.47 kg 
(Bibl.10). 

The program of measurements on these  satell i tes included determination of 
t h e  e a r t h t s  magnetic f i e l d  and X-radiation of t h e  sun [Vanguarci-111 (B ib l . l l ) ]  
and a l s o  t h e  f luxes  of v i s i b l e  and in f r a red  r ad ia t ion  r e f l ec t ed  by t h e  e a r t h  
i n t o  cosmic space [Vanguard-I1 (Bibl.8)I. The lat ter had an instrument capsule 
with equipment weighing 680 gm. It was not or ien ted  i n  space and scanned t h e  
e a r t h t s  surface by t h e  f i e l d  of view of t h e  rece ivers  as a result of r o t a t i o n  
of t h e  e n t i r e  satell i te.  However, it was not poss ib l e  t o  process t h e  received 
da ta  because of o s c i l l a t i o n s  of t h e  satell i te and i n s u f f i c i e n t  s e n s i t i v i t y  /21
of the  in f r a red  rece ivers  (Bibl. 7 ) .  

A series of launchings of s t a b i l i z e d  s a t e l l i t e s  developed f o r  t h e  Discoverer 
program was s t a r t e d  i n  March 1958 t o  prepare manned f l i g h t s  i n t o  space f o r  t h e  
Mercury p ro jec t .  Therefore, many of t h e  satell i tes were equipped with e j ec t ion  
capsules and were used as test-bed f o r  t h e  equipment of reconnaissance satel
l i t e s  of t h e  Midas and Samos types (Bi.bl.11). Equipment f o r  measuring t h e  fo l 
lowing parameters was i n s t a l l e d  both on t h e  e j ec t ion  capsules and on t h e  last 
s tage  of t h e  rocket: cosmic rad ia t ion ,  thermal terrestrial  rad ia t ion ,  micro-
meteor streams, magnetic f i e l d ,  and ion  f l u x  dens i ty .  The e f f e c t  of cosmic 
r ad ia t ion  doses on various l i v i n g  organisms and t h e  propagation of rad io  waves 
were studied. The c h a r a c t e r i s t i c  configuration of t h e  capsule of t h e  Discoverer 
s a t e l l i t e s  was a cylinder with a conical nose. The diameter was about 80 cm, 
length about 70 cm, and weight.130 - a 0  kg. The second s tage  of t h e  launching 
rocket went i n t o  o r b i t  along wi th  t h e  satel l i te  and then  separated from it. 
Many of t he  s a t e l l i t e s  of this series were i n s e r t e d  i n t o  near-circular p o l a r  
o r b i t s  (Bibl.11, 25). 

The meteorological s a t e l l i t e s  of t h e  Tiros series (abbreviation f o r  Tele
v is ion  Inf ra red  Observation S a t e l l i t e )  were intended t o  ob ta in  meteorological 
information on a g loba l  scale,  mainly on t h e  d i s t r i b u t i o n  of t h e  cloud cover and 
r ad ia t ion  balance over t h e  e a r t h t s  surface.  They contain t e l e v i s i o n  equipment 
f o r  t ransmi t t ing  p i c tu re s  of t h e  cloud cover and underlying sur face  and a l s o  
rad ia t ion  sensors f o r  r ad ia t ion  f luxes  r e f l ec t ed  and emitted by t h e  e a r t h  i n  
various spectrum regions. Later ( i n  t h e  Nimbus s e r i e s )  scanning i n f r a r e d  
sensors began t o  be used t o  obta in  images of t h e  cloud cover by in f r a red  rays 
during t h e  dark time of t h e  day. 

Updating of t h e  instrumentation f o r  meteorological satellites was performed 
i n  t h e  launchings of Vanguard-I1 and Explorer-VII. 

From April 1960 t o  December 1963, e ight  satell i tes of t h e  Tiros series were 
launched. They were a l l  manufactured from aluminum and stainless steel a l l o y s  
i n  t h e  form of 18-faced cy l inders  (F'i .7.I) . The center  sec t ion  of t h e  satel
l i t e  c a r r i e s  t h e  receiving antenna (17 and s o l a r  c e l l s  (6)  on t h e  ou te r  surfaces. 
The instrumentation i s  mounted t o  t h e  lower base of t h e  cylinder.  It includes: 
a t e l e v i s i o n  receiving tube  (9)  with a wide-angle l e n s  (lo), a teletransmit
te r  (11)with  a t ransmi t t ing  antenna (12), a con t ro l  device (I.&), a magnetic 
memory (15), a storage b a t t e r y  (16) wi th  r egu la to r  ( 3 ) ,  a receiving tube  (2) 
with a narrow-angle lens ,  and a time relay (4). To maintain t h e  r o t a t i o n a l  
speed of t h e  satel l i te  wi th in  9 - 12 rpm, dry-fuel rocket t h r u s t e r s  (8) are used. 



Fig.7.I Instrumentation of t h e  Meteorological S a t e l l i t e  Tiros-11. 

Fig.8.I Sketch of t he  Nimbus S a t e l l i t e .  
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Counterweights ( 7 )  serve t o  slow down i t s  r o t a t i o n  after separation from t h e  /23
launching rocket (13). 

The Nimbus satel l i te  (Fig.8.1) cons i s t s  of two capsules connected by an 
open trell is .  Its height i s  about 2.5 m, diameter [after deploying of t h e  s o l a r  
panels (3)1  about 1.4m, weight about 240 kg (Bibl.7). The satell i te i s  s tab i 
l i z e d  i n  space and or ien ted  wi th  t h e  bottom of t h e  lower container d i r ec t ed  
toward t h e  ear th .  Pneumatic devices and t h e  i n e r t i a  of t h e  panels ( 3 )  are used 
f o r  s t a b i l i z a t i o n  and or ien ta t ion .  The accuracy of o r i e n t a t i o n  with respect t o  
t h r e e  axes i s  approximately *lo, and i t s  rate of change i s  not more than  0.1" 
p e r  second. The cont ro l  equipment and horizon i n d i c a t o r  (2) are s i t u a t e d  i n  t h e  
upper bay (1). The lower bay (diameter 14-5 cm, height 33 cm) contains t h r e e  
t e l e v i s i o n  vidicon cameras (6) providing a f i e l d  of v i e w  of about 105", an  
e l e c t r o s t a t i c  system of recording t h e  images (5) ,  scanning i n f r a r e d  r a d i a t i o n  
sensors with high (4)and medium ( 8 )  reso lu t ion ,  e l ec t ron ic  equipment ( 9 ) ,  and 
t h e  antenna of t h e  telemetry system ( 7 ) .  

Furthermore, s p e c t r a l  measurements of t h e  i n f r a r e d  spectrum region and 
u l t r a v i o l e t  s o l a r  r ad ia t ion  were scheduled f o r  t h e  Nimbus series (Bibl.7, 15). 

Measurements of c e r t a i n  parameters, i n  p a r t i c u l a r  thermal r ad ia t ion  of t h e  
earth and i t s  albedo, passage of rad io  waves through t h e  ionosphere, and gravi
t a t i o n a l  forces  were ca r r i ed  out by t h e  navigation satel l i tes  of t h e  T r a n s i t  
series and a l s o  by t h e  small simultaneously launched satell i tes.  The l a t t e r  
were made i n  t h e  form of spheroids, about 50 cm i n  diameter and 60 - 90 kg i n  
weight. They ca r r i ed  instrumentatlon for measuring short-wave s o l a r  r a d i a t i o n  
f luxes  [Greb, So la r  r ad ia t ion  (Bib1.31)], f o r  i nves t iga t ing  p a r t i c l e s  of t h e  
r ad ia t ion  bel ts  [ I njun (Bibl.31) 1, e t c .  

Orbiting observatories have recent ly  been launched: a geophysical (OW) i n  
two var ian ts ,  a s o l a r  ( O S ) ,  and an astronomical (OAO) f i t t e d  with instrumenta
t i o n  f o r  'accommodating as many as 20 - 30 d i f f e r e n t  experiments (Bib1.U). It 
i s  proposed t o  increase  t h e  weight of t h e  observa tor ies  t o  G O O  kg (Bibl.31). 
The OS0 launched on March 7, 1962 i n t o  a near-circular o r b i t  a t  an  a l t i t u d e  of 
about 600 km had a weight of about 200 kg. It cons is ted  of two sections:  an 
upper sec t ion  or ien ted  toward t h e  sun and a lower s e c t i o n  which sp ins  f o r  
s t a b i l i z a t i o n .  The lower sec t ion  has three brackets t o  whose ends gas cylinders 
and t h r u s t e r s  f o r  maintaining r o t a t i o n  are mounted (Bibl.31). 

With this observatory, measurements were made of t h e  short-wave s o l a r  
r a d i a t i o n  i n  various spectrum regions, of t h e  energy of cosmic dus t  p a r t i c l e s ,  
and of t h e  charac te r  of thermal r ad ia t ion  of various materials attached t o  t h e  
outside skin. 

We note t h a t ,  t o  tes t  t h e  onboard equipment f o r  o r b i t a l  observatories /24
and t o  inves t iga t e  magnetic f i e l d s ,  cosmic rad ia t ion ,  and s t r u c t u r a l  parameters 
of t h e  atmosphere, sa te l l i tes  bearing t h e  indexes S and P were launched. 

Iaunchings of space vehic les  of t h e  Pioneer series were s t a r t e d  on 
March 17, 1958 t o  inves t iga t e  f l i g h t  rou tes  t o  t h e  moon; however this mission 
was not completed: O f  t h e  six vehic les  launched four  were complete abor t s  and 
tm, Pioneer-IV and Pioneer-V, d i d  not go i n t o  t h e  ca lcu la ted  lunar o r b i t  and 
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became satell i tes of t h e  sun. 

The first of t hese  ca r r i ed  an instrument capsule i n  t h e  form of a glass
fiber-reinforced cone with a base diameter of 230 m and a height of 510 m; t h e  
second was of aluminum a l l o y  i n  t h e  form of a sphere with fou r  paddles t o  which 
t h e  b a t t e r i e s  of t h e  s o l a r  c e l l s  were mounted ( t h e  t o t a l  weight of t h e  vehic le  
was about 40 kg). 

The research program on such space vehic les  ca l l ed  f o r  determining radia
t ions ,  corpuscular fluxes, and propagation of r ad io  waves a t  g rea t  distances.  
Thus, radio communication from t h e  space vehic le  Pioneer-V was accomplished over 
a d is tance  up t o  11.3 mi l l i on  kilometers (Bibl.6, 31). 

A t  present,  new spacecraf t  va r i an t s  of t h e  Pioneer s e r i e s  a r e  being de
veloped., weighing 50 - 60 kg and designed i n  t h e  form of a l m h u m  a l loy  cylinders 
80 em long and 92.5 em i n  diameter (Bibl.11, 17). The s ide  surface of t h e  
vehic le  c a r r i e s  t h e  s o l a r  c e l l s  with t h e  exception of a s t r i p  12.5 em wide 
where t h e  sensors of t h e  various instruments are placed; t h e  magnetometer i s  
attached t o  a rod mounted t o  t h e  body of t h e  vehicle.  The instrumentation in
cludes t h e  following units: 

1)magnetometer with a s e n s i t i v i t y  up t o  1.5 gamma, 
2) two t r a p s  f o r  charged p a r t i c l e s  of i n t e rp l ane ta ry  plasma,
3) two Geiger counters f o r  measuring cosmic rays,
4)a micrometeor c o l l i s i o n  sensor, 
5)  	an instrument f o r  measuring e l ec t ron  concentration i n  in te rp lane tary  

space (based on measurement of rad io  s igna l s  s en t  from t h e  earth at 
frequencies of 50 and 400 me). 

The Ranger spacecraft  series was developed f o r  f l i g h t s  t o  t h e  moon, s ince  
t h e  vehic les  of t h e  Pioneer series d id  not achieve t h e  prescribed cis-lunar 
o r b i t .  The first two Rangers (January 1962) were  intended t o  circumfly t h e  moon 
on a geocentric o r b i t .  Beginning with t h e  Ranger-I11 vehicle, it was planned 
t o  rough-land on t h e  moon an instrumented capsule separated a t  a height of 
20 - 30 h. Tranmiss ion  of images of t h e  luna r  surface by means of a televi
s ion  camera was t o  t ake  p l ace  from a height of about 3000 km before e j ec t ion  of 
t h e  capsule. 

The vehicles of t h e  Ranger series have an openwork s t r u c t u r e  i n  the  form 
of a truncated cone with a base diameter of about 1.5 m and a height of /25
2.5 - 3.5 m (various modifications) i n  an i n t r i c a t e  arrangement. After launch
i n g  t h e  satell i te,  t h e  s i d e  panels with t h e  solar c e l l s  unfold increasing t h e  
span of t h e  vehicle t o  about 5 m; and this i s  followed by deploying of a para
bo l i c  screen antenna. The weight of t h e  vehic les  i s  306 - 349 kg and t h e  weight 
of t h e  s c i e n t i f i c  equipment, about 110 kg (Bibl.3, 15, 23). The spacecraft  i s  
provided with devices f o r  posit ion-fixing relative t o  t h e  sun and w i t h  a cor
r ec t ing  u n i t .  

The instrumentation i s  designed t o  measure t h e  solar r ad ia t ion  i n  various 
s p e c t r a l  ranges, cosmic rad ia t ion ,  magnetic f i e l d s ,  and accumulation of hydrogen 
at t h e  boundary of t h e  ear th ' s  atmosphere. 
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The e j e c t i o n  capsule has a spher ica l  shape, about 0.3 m i n  diameter and 
30 - 4.0 kg i n  weight. It contains equipment f o r  measuring t h e  seismic a c t i v i t y  
of t h e  moon (seismometer and accelerometers) and t h e  r ad ioac t iv i ty  of l una r  
rocks, and a l so  power sources (mercury b a t t e r i e s )  and a rad io  t r ansmi t t e r  with 
a d i r e c t i o n a l  antenna. 

Fig .9 .I Unmanned In te rp lane tary  S ta t ion  Mariner-11. 

After a s e r i e s  of unsuccessful launchings, it became poss ib l e  t o  obta in  
severa l  thousand photographs of t h e  lunar surface a t  various d is tances  from it 
by means of Ranger-VII. 

A t  present,  t h e  USA i s  developing space vehic les  of t h e  Surveyor type which 
are intended f o r  "soft" landing on t h e  moon of an instrument package weighing 
about 34.0 kg; t h e  Prospector f o r  landing a self-propelled or "roving" research 
vehicle; and t h e  Greencheese for sampling and de l iver ing  t o  t h e  e a r t h  specimens 
of t h e  lunar  sur face  (Bibl.11, a,15) .  

The Mariner unmanned in t e rp l ane ta ry  spacecraft  were developed f o r  scien
t i f i c  exploration f l i g h t s  t o  Mars and Venus. They cons i s t  of a complex open
work s t r u c t u r e  (Fig.9 .I) t o  which t h e  instrument capsules, parabol ic  screen 
antenna, and s o l a r  panels are mounted. I n  t h e  launch pos i t ion ,  t h e  maximum dia
meter of t h e  vehic le  i s  1.5 m and i t s  height i s  3 m; i n  o r b i t ,  t h e  span of t h e  
panels reaches 5 m and t h e  height increases  t o  3.6 m owing t o  r a i s i n g  of t h e  
antenna (Bibl.4, 11, 15). 

Unmanned in t e rp l ane ta ry  spacecraf t  of t h e  Mariner type had t h e  mission t o  
t ake  measurements t o  e l i c i t  t h e  forms of l i f e  on p lane ts ,  t o  i nves t iga t e  t h e  
composition of t h e i r  atmospheres, r ad ia t ion  level, and magnetic f i e l d s  and a l so  
t h e  character and s t r u c t u r e  of t h e  surface of t h e  p lane ts .  Furthermore, 

f i e l d s ,  
/26

during t h e  f l i g h t  t h e  basic parameters of space are measured 
cosmic dust,  concentration of charged p a r t i c l e s ,  and cosmic 
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The launch of Mariner-I1 toward Venus on August 27, 1962was successful.  
The spacecraft  had a weight of about 212 kg and accomplished t h e  measurements 
ca l l ed  f o r  i n  t h e  program. To determine t h e  water vapor content i n  t h e  atmos
phere of Venus and t h e  temperature of i t s  surface t h e  equipment included micro
wave (13.5 and 19 mm) and i n f r a r e d  ( i n  t h e  8 - 9 and 10 - 10.8 i . ~  range) radio
meters. Cosmic r ad ia t ions  were measured by equipment wi th  gas-discharge 
counters and ion iza t ion  chambers; micrometeorites by p i ezoe lec t r i c  pickups, 
magnetic f i e l d  by three-component magnetically sa tu ra t ed  sensors, concentration 
of charged p a r t i c l e s  by multigrid t r a p s  wi th  10 voltage levels. 

The Mariner-I1 accomplished Venus fly-by a t  a d i s t ance  of 35,600 km (calcu
l a t ed :  16,000 km). Communication with t h e  c r a f t  was maintained LZP t o  a d is tance  
of 86.7 mi l l i on  kilometers. 

The Voyager p r o j e c t  i s  being developed f o r  launching space vehicles i n t o  
satel l i te  o r b i t s  of Mars or Venus and f o r  e j ec t ing  an instrument package t o  t h e  
sur face  (Bibl.11, 15) .  

CHAPTER 11 

DISTURBANCE OF THE MEDIUM BY THE CAPSUIJZ 

Section 1. 	Disturbance of t h e  Concentration of P a r t i c l e s  
Close t o  a Moving Capsule 

The equipment f o r  measuring t h e  parameters of t h e  upper atmosphere and 
space, as mentioned above, i s  i n s t a l l e d  i n  various capsules which generally move 
a t  high velocity.  A s  a result, changes occur i n  t h e  ambient plasma which must 
be taken i n t o  account when developing measuring techniques and a l s o  when in t e r 
p re t ing  t h e  results, so  as t o  obta in  parameters of an undisturbed medium. 

L e t  us take  t h e  ve loc i ty  of t h e  satel l i te  as t h e  c h a r a c t e r i s t i c  ve loc i ty  
of t h e  capsule a t  high a l t i t u d e s  vo. The ve loc i ty  of p a r t i c l e s  i s  determined 
by t h e i r  temperature at  a given l e v e l  i n  t h e  atmosphere. 

I n  t h e  undisturbed plasma of t h e  upper atmosphere t h e  ve loc i ty  d i s t r ibu 
t i o n  of p a r t i c l e s  can be considered Maxwellian (Bibl. l) ,  namely: 

f ( u  + ZJO) = n o  (1.11)
2kT 

where f (v  + vo) i s  t h e  d i s t r i b u t i o n  func t ion  wi th  respect t o  t h e  d i r e c t i o n  
axis r, v i s  t h e  ve loc i ty  of p a r t i c l e s  having a mass M and a temperature T, no 
i s  the  p a r t i c l e  concentration, k i s  t h e  Boltzmann constant, vo i s  a ve loc i ty  
component of t h e  capsule i n  t h e  given d i r e c t i o n  r. 

I n  a Maxwellian d i s t r ibu t ion ,  as i s  known (Bibl.S), t h e  main ve loc i ty  of 
t h e  forward motion of p a r t i c l e s  of mass M i s  equal t o  
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8kTV = y x ,  
(2.11) 

where  T i s  t h e  temperature of t h e  plasma i n  thermal equilibrium. 

I f  we t ake  i n t o  account t h a t  t h e  e lec t ron  temperature T, i s  approximately
equal t o  t h e  i o n  temperature Ti (Bibl.4, 3 ) ,  then  eq.(2.II) will y i e l d  

where M and m are t h e  i o n  and e lec t ron  masses, respectively.  

For example, a t  TI = T, = 1000°K, eqe (2 . I I )  y i e l d s  vi = IO5  cm/sec f o r  t h e  
ions  of atomic oxygen, and v, = lo7 cm/sec f o r  e lec t rons .  

A t  a ve loc i ty  of t h e  capsule of vo = 8 X 10' cm/sec, we have 

V e  >> V O > V ~ .  (4.11) 
The inequa l i ty  (L+..II),as i s  apparent from Table 1.11 compiled from t h e  

da ta  of another paper (Bibl.1) i s  s a t i s f i e d  i n  a wide range of a l t i t u d e s  of t h e  
upper atmosphere. 

The mean f r e e  pa th  of neu t r a l  molecules A,, of e lec t rons  A,, and of i ons  h i  
at high a l t i t u d e s  s u b s t a n t i a l l y  exceeds t h e  c h a r a c t e r i s t i c  dimension of t h e  
capsule ( rad ius  R = 13 cm) . 

The character of flow p a s t  t h e  capsule, and even more so  t h e  e f f e c t  on t h e  
sensors of t h e  measuring instruments ( c h a r a c t e r i s t i c  dimension ro = 1- 10 cm) 
by t h e  r e l a t i v e  flow, i n  this case has a f r e e  molecular character i n  which t h e  
p a r t i c l e s  move independently of one another i n  conformity wi th  t h e i r  m a s s ;  
there a r e  no aerodynamic e f f e c t s  i n  the  immediate v i c i n i t y  of t h e  capsule; i n  
p a r t i c u l a r ,  no boundary l a y e r  i s  formed. Therefore, i n  t h e  g r e a t l y  r a re f i ed  
plasma of t h e  upper atmosphere conventional aerodynamic methods are inapplicable.  
To descr ibe  t h e  behavior of p a r t i c l e s  c lose  t o  t h e  capsule, we must use t h e  /28
k i n e t i c  theory which takes  i n t o  account t h a t  t h e  medium i s  an aggregate of ind i 
vidual p a r t i c l e s ,  as was done elsewhere (Bibl.1, 4,8); t h e  bas ic  results are 
examined below. 

Let us imagine a coordinate system (r, z )  r e fe r r ed  t o  a spher ica l  capsule 
(Fig.l.11). In this coordinate system, t h e  capsule moving a t  a ve loc i ty  vo i s  
s t ruck  by a f l u x  of n e u t r a l  p a r t i c l e s  (molecules and atoms) whose thermal ve
l o c i t y ,  i n  first approximation, can be neglected with respec t  t o  vo. After 
c o l l i s i o n  with t h e  capsule surface,  t h e  n e u t r a l  p a r t i c l e s  are r e f l ec t ed ,  causing 
t h e  formation of a s tagnat ion  zone ahead of t h e  capsule i n  which t h e  concentra
t i o n  of p a r t i c l e s  i s  increased, and formation of a zone of r a re fac t ion  aft  of 
t h e  capsule. 

Let us assume t h a t  t h e  r e f l e c t i o n  of p a r t i c l e s  i s  of a specular na ture  and 
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TABLE 1.11 

CERTAIN CHARACTERISTICS OF THE UPPER ATMOSPHEXZ AND SPACE 

l a r t t i '  s Atmosphere 

100 50 - 1 2.102 4.104 9.4- 106 
200 7.103 0.2-1 - 2 4.102 7-104 1 .5-107 
300 9.103 0.1-0.7 - 3 5.6-10; 9.10* I .9.107 
400 2.104 0.2-0.4 - 3 5.5-10; I05  2.2.107 
500 '4.104 0.3-0. G - 3 -7.102 1.1-105 2.5.107 
700 105 0.4-0.7 - 4 8.2.102 1 .G.IOj 2.9.107 
lo00 8.105 1 - 5 -103 2.0.105 3.4.107 
m 3.106 4 -I4 2.103 2.3-105 3.9.107 

3- 4 -2,106 
Earth
R n d i i  

- 3.106 I 5.4.107 

Note. The symbols A,, A, ,  and A, denote t h e  mean free paths  
of neutrons, e lectrons,  and ions respect ively;  B i s  t h e  
Debye radius,  pe and PI are t h e  Iarmor r a d i i  f o r  e lectrons 
and ions;  v,, v i ,  and v, are t h e  thermal ve loc i t i e s  of neut ra l  
p a r t i c l e s ,  ions,  and electrons.  

t h a t  t h e  ve loc i t i e s  of t h e  p a r t i c l e s  impinging on t h e  body and of t h e  re f lec ted  
p a r t i c l e s  are iden t i ca l .  kt us determine t h e  steady d i s t r i b u t i o n  of t h e  /29
neut ra l  p a r t i c l e  concentration n, f o r  specular r e f l e c t i o n  which, as shown by 

ana lys i s  (Bibl.k), i s  establ ished after a time -	Ro equal t o  about sec i nv0 

t h e  Vicini ty  of a spherical  capsule with a radius  Ro of about 100 cm. 

I n  t h e  case under consideration (F ig . l . I I ) ,  t h e  number of r e f l ec t ed  
p a r t i c l e s  contained i n  a small volume dw (r, z )  s i tua t ed  a t  a point  w i t h  t h e  
coordinates (r, z )  will be equal t o  t h e  concentration of p a r t i c l e s  i n  the  rela
t i v e  flow dw (r, 0) re f lec ted  from a ce r t a in  poin t  of t h e  capsule surface,  
which i s  determined by t h e  angle 8. The excess concentration a t  t h e  poin t  under 
consideration ahead of t h e  capsule i s  

dw.(r, 0)
4 ( r ,  2 )  = rto d w ( r ,  2 )  ' 
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where no i s  t h e  concentration of neu t r a l  p a r t i c l e s  i n  an  undisturbed flow. 

The t o t a l  concentration of p a r t i c l e s  at  any po in t  (r, z )  of t h e  stagnation 
zone will be 

n n k  4= n h ,  .t)+no. (6.11) 

A s  shown elsewhere (Bibl&), due t o  t h e  f a c t  t h a t  t h e  ve loc i ty  of p a r t i c l e s  
subjec t  t o  e l a s t i c  c o l l i s i o n s  remains constant, t h e  r a t i o  of t h e  examined 
volumes i s  equal t o  t h e  r a t i o  of t h e i r  cross sec t ions  

where  

2 r (  1 - 5 s i n 2 e )ra =Rosin0, dl = sin28 
~ de. 

From eqs.(S.II) and (7.11), we obta in  

(8.11) 


It follows from eq.( 8.11) . t h a t  t h e  excess concentration rap id ly  decreases 

(propor t iona l  t o  -&-) with d is tance  from t h e  capsule ( r  > h). 
r 

Fig.l.11 Diagram of t h e  Formation of a Disturbed 
Region Close t o  a Moving Body. 

I n  t h e  case of d i f f u s e  r e f l ec t ion ,  t h e  mean  ve loc i ty  of t h e  sca t t e red  
p a r t i c l e s  with respect t o  a normal t o  t h e  body surface w i l l  decrease, whereas 
t h e  excess concentration, e spec ia l ly  c lose  t o  t h e  surface, will increase.  A s  
shown by ana lys i s  (Bibl.4), a t  a d i s t ance  of 0.01 Ro from t h e  surface i n  t h e  
f r o n t  p a r t  t h e  excess concentration ( f o r  example) i s  t r i p l e  t h e  p a r t i c l e  concen
t r a t i o n  i n  t h e  undisturbed relative flow no. 

I n  this case, i f  a l l  oncoming p a r t i c l e s  were inmobile (v  = O), t h e  space 
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behind t h e  container would be completely empty. The presence of thermal agita
t i o n  of t h e  p a r t i c l e s  f o r  t h e  decompression ( r a re fac t ion )  region i s  es sen t i a l ,  
s ince  owing t o  t h e  motion of t h e  ve loc i ty  component of t h e  p a r t i c l e s  normal t o  
t h e  d i r e c t i o n  of f l i g h t  of t h e  capsule, this region i s  f i l l e d .  The dimension of 

VOt h e  highly r a r e f i e d  zone i s  of t h e  order  of Ro 7 and, i n  t h e  case of a rapid

l y  moving body (vo 9 v), t h e  r a re fac t ion  zone proved t o  be much l a r g e r  than  t h e  
disturbed s tagnat ion  zone ahead of t h e  capsule. The concentration n" c lose  t o  
t h e  af t  surface of a rap id ly  moving capsule w i t h  a Maxwellian ve loc i ty  d is t r ibu
t i o n  described by eq . ( l . I I )  proves t o  be small, i n  conformity w i t h  t h e  expo
n e n t i a l  r e l a t i o n  

We should emphasize t h a t  t h e  concentration of p a r t i c l e s  i n  t h e  r a re f i ed  
region i s  independent of t h e  character of t h e i r  i n t e r a c t i o n  with t h e  surface of 
t h e  body. The concentration of p a r t i c l e s  moving more r ap id ly  than t h e  capsule, 
v 9 vo, i s  evidently negl ig ib ly  disturbed by it. Therefore, t h e  r a re f i ed  region 
i s  f i l l e d  mainly by p a r t i c l e s  of low mass ( e l ec t rons ) .  

The concentration d i s t r i b u t i o n  of n e u t r a l  p a r t i c l e s  c lose  t o  a s p h e r i c a l m  
capsule whose ve loc i ty  i s  by a f a c t o r  of 8 g r e a t e r  than t h e  ve loc i ty  of t h e  
p a r t i c l e s  (vo = 8v), calculated by A,V.Gurevich (Bibl.k), i s  shown i n  Fig.2.11. 
Calculation demonstrates t ha t ,  a t  a d i s t ance  of 80 Ro from the  capsule, t h e  
p a r t i c l e  concentration i n  t h e  r a re f i ed  region i s  less than t h e  undisturbed con
cent ra t ion  no by only 0.01 no. 

Fig.2.11 I so l ines  of t h e  Density of Molecules Close t o  a 
Spherical  Capsule Moving; a t  a Velocity of vo = 8v. 

The concentration d i s t r i b u t i o n  of charged p a r t i c l e s  - i ons  and espec ia l ly  
e lec t rons  - unlike n e u t r a l  p a r t i c l e s  depends not only on t h e i r  i n t e r a c t i o n  w i t h  
t h e  capsule, but a l s o  on t h e  e l e c t r i c  and magnetic f i e l d s  c lose  t o  it. 

If eq.(&.II) i s  s a t i s f i e d  and i f  t h e  energy of t h e  i o n s  s t r i k i n g  t h e  body 

~7-
Mvi 
subs t an t i a l ly  exceeds t h e i r  thermal energy kT, it can be considered i n  

first a p p r o h a t i o n  t h a t  t h e  disturbances, e spec ia l ly  i n  t h e  compression zone, 
have t h e  same charac te r  as t h e  disturbances of t h e  concentration of n e u t r a l  



molecules examined above. This i s  due t o  the  f a c t  t h a t  t h e  p o t e n t i a l  energy of 
t h e  i o n  i n  an e l e c t r i c  f i e l d  ecp generated as a consequence of disturbances of 
t h e  plasma i s  usual ly  only of t h e  order  of t h e  thermal energy (Bib1.1). 

A d e f i n i t e  e f f e c t  on t h e  d i s t r i b u t i o n  of ions  c lose  t o  a charged capsule 
can be exerted by i t s  own poten t ia l .  For this reason a shielding space-charge 
l aye r  i s  formed close t o  t h e  capsule. The values of t h e  Debye shielding dis
tance for a f ixed charge i n  an undisturbed plasma with a charged p a r t i c l e  con

cent ra t ion  N, equal t o  D = J -, are given i n  Table 1.11f o r  various alt ikT 
tudes . 4ne” N 

I n  t h e  case of a rapidly moving l a rge  body (whose s i z e  i s  e s s e n t i a l l y  
l a r g e r  than t h e  Debye radius  at  a given a l t i t u d e  Ro 4 U), t h e  f i e l d  p o t e n t i a l  a t  
a dis tance of t h e  order of D from t h e  capsule surface,  as shown elsewhere & 
(Bib l , l ) ,  rapidly decreases t o  t h e  value of t h e  thermal p o t e n t i a l  of t h e  plasma 

kT m’cp = 7.A t  t h e  same time, usual ly  t h e  ecp -2 , and thus also,  t h e  e l e c t r i c  

charge of  t h e  capsule do not g rea t ly  a f f e c t  t h e  s t ruc tu re  of t h e  disturbed zone 
of heavy charged p a r t i c l e s .  

I n  t h e  case of a slowly moving (vo < vi) or s m a l l  (bS U) body, t h e  e f f e c t  
of t h e  e l e c t r i c  charge, however, becomes very subs t an t i a l  and even determines 
t h e  s t ruc tu re  of t h e  ion ic  zone of disturbance. 

The d i s t r ibu t ion  of t h e  p a r t i c l e  concentration ( i n  our case, mainly elec
t rons )  i n  t h e  steady state close t o  a charged body i s  described by t h e  Boltz
mann equation 

N ( r )  =N o  exp [ -
kT (10.11) 

where N ( r )  and N o  are t h e  p a r t i c l e  concentrations a t  the  point  r and, i n  an un
disturbed medium far from t h e  body (cpo = o) ,  t h e  quantity cp(r) denotes t h e  
e l e c t r i c  f i e l d  p o t e n t i a l  a t  t h e  poin t  r. 

The e f f e c t  of t h e  ear th’s  magnetic f i e l d  i s  manifested by a change i n  t h e  
character  of motion of t h e  ions  t h a t  are ab le  t o  move f r e e l y  only i n  t h e  direc

+ + 
t i o n  of t h e  f i e l d  s t rength  vector  T&, and r o t a t e  i n  a plane perpendicular t o  Ho. 

The magnitudes of t h e  Iarmor r a d i i  p i  = -& (VI i s  t h e  veloci ty  component of 
+ 

thermal ag i t a t ion  of a p a r t i c l e  i n  a plane perpendicular t o  Ho, w h i l e  w i s  the  
angular veloci ty)  are shown i n  Table 1.11. The Lamor radius  f o r  ions  a t  high 
a l t i t u d e s  i s  s u f f i c i e n t l y  l a r g e  so t h a t  t h e  ear th’s  magnetic f i e l d  subs tan t ia l ly  
a f f e c t s  the  motion of t h e  ions  in t e rac t ing  with t h e  capsule at  s u f f i c i e n t l y  

grea t  d i s tances  from t h e  capsule surface z 2 P i  -$-. Consequently, t h e  e f f e c t  

of t h e  magnetic f i e l d  manifests  i t se l f  mainly i n  an increase  of t h e  dimensions 
of t h e  ra refac t ion  zone, and t h e  concentration of i ons  i n  this zone does not 
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decrease inverse ly  propor t iona l ly  t o  t h e  square of t h e  d is tance  r", as i n  t h e  
case of n e u t r a l  p a r t i c l e s ,  but t o  t h e  d i s t ance  r (Bib1.1). 

I n  t h e  p a r t i c u l a r  case of motion along t h e  d i r e c t i o n  of t h e  magnetic f i e l d ,  
t h e  wake of t h e  capsule ( r a r e f i e d  zone) i s  f i l l e d  only as a result of i o n  c o l l i 
sions,  s ince  i n  themselves t h e  ions  cannot move i n  a d i r e c t i o n  perpendicular t o  
t h e  d i r e c t i o n  of t h e  f i e l d .  

A capsule moving a t  a ve loc i ty  vo, which i s  appreciably smaller than t h e  
e lec t ron  velocity,  and usua l ly  having a negative p o t e n t i a l ,  d i s tu rbs  t h e  e@
librium d i s t r i b u t i o n  of t h e  e lec t rons  only s l i g h t l y .  The d i s t r i b u t i o n  of L22 
e lec t ron  concentration c lose  t o  t h e  capsule i s  described by t h e  Boltzmann equa
t i o n  (10.11). Thus, t h e  magnitude of t h e  e l ec t ron  concentration i n  the  dis
turbed zone i s  almost completely determined by t h e  e l e c t r i c  f i e l d  poten t ia lcp .  
Disturbances of t h e  i o n  concentration i n  t h e  q p e r  atmosphere d i f f e r  l i t t l e  from 
disturbances of n e u t r a l  p a r t i c l e s  caused by r e f l e c t i o n  of t h e  r e l a t i v e  flow from 
t h e  capsule. TheirThere i s  p r a c t i c a l l y  no e f f e c t  of shading on t h e  e lec t rons .  
d i s t r i b u t i o n  i n  t h e  v i c i n i t y  of t h e  capsule i s  determined by t h e  e l e c t r i c  f i e l d .  

Section 2. E l e c t r i c  F ie ld  Close t o  t h e  Capsule 

The e l e c t r i c  f i e l d  i n  t h e  v i c i n i t y  of t h e  container i s  created both by t h e  
space charge a r i s i n g  i n  t h e  plasma owing t o  t h e  d i f fe rence  of concentration of 
charged p a r t i c l e s  of t h e  medium i n  t h e  d is turbed  zone and by t h e  e l e c t r i c  charge 
of t h e  capsule i t se l f .  

The p o t e n t i a l  of t h e  e l e c t r i c  f i e l d  cp' of a negative space charge, as 
follows from eq.(lO.II), i s  equal t o  

kT N ,
cp'(r) = --In-, e No (ll.11) 

where N, i s  t h e  e lec t ron  concentration a t  t h e  po in t  r, and NO i s  t h e  concentra
t i o n  l a y e r  of p a r t i c l e s  i n  t h e  undisturbed plasma. 

The p o t e n t i a l  of t h e  m e t a l  capsule cp i n  t h e  plasma i s  determined by t h e  
balance of e l e c t r i c  cur ren ts  a r i s i n g  as a result of i t s  c o l l i s i o n  with charged 
p a r t i c l e s  and by emission of e lec t rons  caused by i r r a d i a t i o n  of i t s  surface. 

I n  i t s  general  form, t h e  cur ren t  balance, according t o  V.G.Kurt and V.I. 
Moroz (Bibl.6), i s  wr i t t en  as follows: 

(12.11) 

where I, i s  t h e  cur ren t  of plasma e lec t rons  absorbed upon c o l l i s i o n  with t h e  
capsule; I,, i s  t h e  cur ren t  of r ad ia t ing  e lec t rons  absorbed on passage through 
t h e  r ad ia t ion  b e l t s  or i n  t h e  corpuscular streams; Ii i s  t h e  stream of plasma
ions  ( i n  space, t h e  proton cur ren t ) ;  I,, i s  the  cur ren t  of rad ia t ing  protons; 
Iph i s  the  cur ren t  of photoelectron emission a r i s i n g  under t h e  e f f e c t  of short
wave s o l a r  rad ia t ion ,  I, i s  t h e  current of secondary e l ec t rons  generated under 
bombardment of t h e  capsule by high-energy p a r t i c l e s .  
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Let us estimate t h e  magnitudes of t h e  components of t h e  balance [eq.(l2.11)1,
beginning with t h e  most s u b s t a n t i a l  at  high a l t i t u d e s .  

If t h e  monochromatic energy i l l m i n a t i o n  of t h e  capsule i s  E v t h e n ,  a t  a 
p o t e n t i a l  of t h e  capsule of = 0, t h e  f l u x  of photoelectrons Nph from u n i t  
surface i n  u n i t  time w i l l  be determined by t h e  obvious r e l a t i o n  

m 

where k v  i s  the  quantum y i e l d  of t h e  capsule material f o r  a rad ian t  f l u x  of a 
given frequency v, and h i s  Planck's constant. 

The t o t a l  photocurrent from t h e  sur face  of a spher ica l  capsule with a 
radius Ro, neglecting t h e  dependence of t h e  quantum e f f i c i ency  on t h e  angle of 
incidence of t h e  rad ia t ion ,  W i l l  be 

It must be borne i n  mind tha t ,  as t h e  p o s i t i v e  p o t e n t i a l  of t h e  capsule 
increases,  a negative space-charge sh ie ld ing  l a y e r  forms c lose  t o  it causing a 
decrease i n  t h e  photocurrent Iph. 

Calculation (Bibl.6) has  shown tha t ,  i n  t h e  upper atmosphere, t h e  photo-
current caused by t h e  e f f e c t  of: short-wave s o l a r  r a d i a t i o n  i s  approximately 
equal t o  I p h  = 1.5 x 19"e em-" see-' = 2.5 x io-' amp/cm2 f o r  cpo = 0, w h i l e  

N
at  (PO - + 6 v the  photocurrent I p h  drops by about one order of magnitude. A 
f u r t h e r  increase  i n  t h e  p o s i t i v e  p o t e n t i a l  of t h e  capsule (up t o  100v)has a much 
smaller e f f e c t  on t h e  magnitude of t h e  photocurrent. 

Any va r i a t ion  i n  t h e  p o t e n t i a l  of t h e  capsule cpo with time i s  determined by 
t h e  change i n  t h e  current balance. The p o t e n t i a l  a t  t h e  t i m e  t w i l l  be 

t 

where C i s  t h e  capacitance of t h e  capsule (without consideration of t h e  plasma 
C = Ro em). 

An estimate (Bibl.6) showed t h a t  t h e  p o t e n t i a l  cpo = +6v under t h e  e f f e c t  of 
only short-wave s o l a r  r a d i a t i o n  i s  attaine: i n  t h e  time t - see, whereas 
(PO = +lo0 v i s  reached i n  t h e  time t h 10- sec. After this, t h e  increase  i n  
t h e  p o t e n t i a l  i s  very slow; however, after one day t h e  p o t e n t i a l  of t h e  capsule 
i n  t h e  presence of only a photocurrent would reach t h e  appreciable value of 
cpo N +2 kv. 

Let us ca l cu la t e  t h e  e l ec t ron  and proton r a d i a t i o n  current.  

The inequa l i ty  of t h e  thermal v e l o c i t i e s  of p a r t i c l e s  i n  t h e  upper atmos
phere ( see  Sect.1) causes t h e  cur ren t  of t h e  r a d i a t i o n  e l ec t rons  impinging on 
t h e  capsule t o  become appreciably l a r g e r  than  t h e  cur ren t  of protons he 9 hPp 
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at c lose  values of t h e  concentration of e l ec t rons  and protons ne n . Further
more, t h e  e lec t ron  fluxes i n  the  r ad ia t ion  be l t s  ( s e e  Chapt.V, Sect.1) exceed & 
t h e  proton fluxes.  Therefore, we can neglect t h e  quantity I,, f o r  Ire. The 
current of r ad ia t ion  e l ec t rons  striking t h e  body of a sphe r i ca l  capsule a t  iso
t r o p i c  f l u x  w i l l  be 

1 re =4ni?;Noe, (16.11) 

where No i s  t h e  f l u x  of r ad ia t ion  e lec t rons .  

The f lux No inc ludes  e l ec t rons  of any energy (Ee ) ,  i.e., it i s  i n  turn, 
determined by t h e  equal i ty  

m 

NO=J N (Ee)dEe . (17.11)
0 

An estimate of t h e  maxi” poss ib l e  f l u x  No (Bibl.6) y i e l d s  a value of t h e  
order of No = 10’” t o  10” em-“ see-’, and a cur ren t  density up t o  I,, = 
= lo-* y eme2. Consequently, a t  t h e  t ops  of t h e  r ad ia t ion  bel ts  ( a t  No > 
> 5 x 10 em-” sec-’) t h e  e l ec t ron  current may exceed t h e  magnitude of t h e  
photocurrent so  t h a t  t h e  capsule, under i t s  e f f ec t ,  may acquire an appreciable 
negative p o t e n t i a l .  

The secondary emission current,  under t h e  e f f ec t  of r ad ia t ion  e lec t rons  
I,, , l eads  t o  an increase  in t h e  p o t e n t i a l  of t h e  capsule yo. Of course, i t s  
magnitude, f o r  a secondary emission coe f f i c i en t  of 7 < 1, does not exceed t h e  
e lec t ron  current Ire ( f o r  aluminum, f o r  exaxple, 17 < 0.5 a t  E, = 10 Kev). 
Furthermore, t h e  secondary emission current abruptly drops on an increase  i n  t h e  
p o s i t i v e  p o t e n t i a l  of t h e  capsule up t o  seve ra l  v o l t s ,  s ince  t h e  ma;dmum energy 
of secondary e lec t rons  does not exceed a f e w  electron-volts.  

The i o n  current Ii and t h e  e lec t ron  cur ren t  I, of t h e  plasma are formed as 
a r e s u l t  of p a r t i c l e  absorption upon c o l l i s i o n  and are most i n t ense  i n  t h e  ionos
p here .  

If t h e  thermal ve loc i ty  of t h e  ions  i s  much lower than t h e  ve loc i ty  of t h e  
capsule vi vo, we can neglect t h e  quantity vi and wr i t e ,  i n  f i r s t  approxima
t ion ,  t h e  i o n  current s t r i k i n g  t h e  capsule as t h e  quantity of e l e c t r i c i t y  con
tained within a cylinder,  cu t  out by t h e  capsule as it moves i n  the  plasma, 

I .  =nR2,voPinoie, (18.11) 

where noi i s  t h e  i o n  concentration i n  t h e  undisturbed plasma, Pi i s  t h e  coeffi
c i en t  of absorption (neu t r a l i za t ion )  of i ons  a t  t h e  capsule surface. 

I n  ca lcu la t ing  t h e  e lec t ron  current,  it i s  necessa r j  t o  allow f o r  t h e  
capsule p o t e n t i a l  cpo, which determines t h e  p a r t i c l e  d i s t r i b u t i o n  close t o  t h e  
sur f  ace. 

We note t h a t  t h e  presence of a space charge c lose  t o  t h e  charged con
t a i n e r  must be accounted f o r  i n  a more rigorous ca l cu la t ion  of t h e  i o n  current,  
espec ia l ly  a t  grea t  a l t i t u d e s  where t h e i r  thermal ve loc i ty  vi i s  comparable t o  
o r  even exceeds t h e  ve loc i ty  of t h e  capsule vo. 
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The space charge region i s  deformed by t h e  motion of t h e  capsule and by t h e  
formation of a stagnation zone ahead of it and of a r a re fac t ion  zone af t  of it. 
A s  a consequence, e lec t rons  W i l l  be present  only i n  a po r t ion  of t h e  f r o n t  hemi
sphere and t h e i r  e f f ec t ive  surface, as demonstrated elsewhere (Bibl.k), i s  equal 

t o  - 0  
i-G 

2 

0 I. . I 
IO IO 105 . 10" 

IVL t o n - " 3  

F'ig.3.11 Thickness of t h e  Space Charge Layer Rk as a 
Function of t h e  Ion Concentration N,. 

Taking i n t o  account t h e  above statements, t h e  e l ec t ron  cur ren t  s t r i k i n g  t h e  
negatively charged capsule i n  t h e  presence of a Boltzmann d i s t r i b u t i o n  
[eq . ( lO. I I ) l  was expressed by A.V.Gurevich (Bibl.4) i n  t h e  following form: 

where v, i s  t h e  mean thermal e lec t ron  ve loc i ty  i n  Maxwellian d i s t r i b u t i o n  
[ e q . ( l . I I ) ]  and P, i s  t h e  coe f f i c i en t  of absorption of e l ec t rons  on t h e  capsule 
surface.  

W e  note t h a t  t h e  thickness of t h e  sphe r i ca l  region of t h e  space charge 
l a y e r  Ra f o r  a s t a t iona ry  container can be determined a n a l y t i c a l l y  (Bibl.9). 

The dependence of t h e  l a y e r  thickness on t h e  i o n  concentration = f(N,) 
a t  T = T, = 300'K i s  p l o t t e d  i n  Fig.3.11 from which it follows t h a i ,  at  t h e-ind ica ted  temperatures, a decrease i n  concentration even t o  N 10 
 w i l l  
result i n  an increase  i n  t h e  thickness of t h e  space charge l a y e r  only t o  15 cm, 
w h i l e  on f u r t h e r  decrease i n  Ni t h e  thickness of t h e  sh ie ld ing  space charge 
l a y e r  w i l l  increase  rap id ly .  

I n  t h e  absence of a photocurrent and a cur ren t  of r a d i a t i o n  p a r t i c l e s ,  t h e  
capsule, during i t s  travel through t h e  plasma at  noe = ai,W i l l  acquire a 
p o t e n t i a l  (PO whose magnitude i s  determined by t h e  simple current balance I, = 1, 
Neglecting t h e  space charge and using eqs.(l8.11) and (19.11), we ob ta in  
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e e nmvo (20.11) 

In  t h e  ionosphere, t h e  p o t e n t i a l  (PO < 0; as shown by an estimate, it i s  

kTequal t o  approximately (2 - 3 )  T .The magnitude of t h e  thermal plasma PO

kTt e n t i a l  e i s  small and does not exceed several v o l t s  a t  T 2 lo" OK. 

The general  equation of balance (12.11) w a s  solved (Bibl.6) graphical ly  f o r  
various values of u, noi ,  T, and No t h a t  are poss ib le  i n  t h e  upper atmosphere 
and i n  i n t e r p l a n e t a 9  plasma. For t h e  previously made estimates of the  cur ren ts  
Iph,I,, , and T - 10 - lo" K ,  t h e  p o t e n t i a l  of a eaE: sule having a radius  of 

= 65 em proves t o  be about cpo - 20 v i f  noi = 10 but  w i l l  be cp, = 
= -0.5 - 3 v i f  noi = lo" Outside t h e  r ad ia t ion  be l t s ,  i n  t he  i l l m i n a 
t i o n  por t ion  of t h e  f l i g h t  pa th  of t h e  capsule, i t s  p o t e n t i a l  - as shown bxca lcu la t ion  (Bibl.6) - should be wi th in  -2.5 v cp 5 +4 v, i f  noi > 10 em' . 

T h i s  theory does not take account of t h e  e f f e c t  of t h e  magnetic f i e l d  on 
t h e  motion of charged p a r t i c l e s .  Evidently, this i s  permissible  only a t  high 
a l t i t u d e s  where t h e  Larmor r a d i i  of t h e  p a r t i c l e s  exceeds t h e  radius  of t he  
space charge a t  t h e  capsule p e  and p i  Ro (see Table 1.11). A t  heights of 
h < 7000 km, the  Larmor rad ius  f o r  e lec t rons  i s  small  pe < R p ,  so  t h a t  t h e  
e lec t ron  current,  under consideration of t h e  magnetic f i e l d  a t  a l o w  a l t i t u d e  
above t h e  ear th ,  drops by-about half w h i l e  t he  p o t e n t i a l  of t h e  capsule in
creases,  approaching cp, = 0, i f  n,, > 10" (Bibl.6). 

Section 3. 	Disturbance of t h e  Upper Atmosphere by Desorption 
of Molecules from t h e  Capsule Surface 

Along with t h e  already discussed disturbances of t h e  upper atmosphere, 
caused by r e f l e c t i o n  of p a r t i c l e s  of t h e  ambient medium upon c o l l i s i o n  with t h e  
capsule, t he re  are a l s o  disturbances caused by the  l i b e r a t i o n  of gas molecules 
due t o  desorption from t h e  surface o r  outgassing from wi th in  the  capsule. Obvi
ously, these  e f f e c t s  are g rea t e s t  soon after launching. 

The disturbances due t o  molecule desorption cons i s t  of an increase i n  
densi ty  of t h e  ambient medium and a change i n  i t s  composition. Furthermore, t he  
molecules l i be ra t ed  from the  capsule w i l l  have a ve loc i ty  of about 8 km/sec and 
thus  an energy of t h e  order  of 10 ev, which i s  s u f f i c i e n t  f o r  i on iza t ion  of t h e  
molecules of t h e  medium or f o r  causing reac t ions  of a thermochemical nature.  
Therefore, it i s  na tu ra l  t h a t ,  i n  measuring t h e  concentration of neu t r a l  and 
charged p a r t i c l e s  and t h e  dens i ty  of t h e  upper atmosphere by means of onboard 
instruments, these  e f f e c t s  are taken i n t o  account. 

The molecules re leased from t h e  capsule surface as a r e s u l t  of desorption 
have a l o w  dens i ty  so  t h a t ,  i n  first approximation, t h e i r  t r a j e c t o r i e s  w i l l  
be r e c t i l i n e a r  up t o  c o l l i s i o n  with p a r t i c l e s  of t h e  ambient medium. Upon 
e l a s t i c  c o l l i s i o n  of t h e  desorbed molecule wi th  a v i r t u a l l y  s ta t ionary  molecule 
of t h e  medium, t h e  former lo ses  on t h e  average half  of i t s  veloci ty ,  and i n  
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i n e l a s t i c  c o l l i s i o n  t h e  l o s s  i s  even grea te r .  A s  a consequence, t h e  desorbed 
molecules, after co l l i s ion ,  e i t h e r  remain a t  some d is tance  f r o m t h e  capsule or 
r e tu rn  t o  i t s  surface.  

The molecules desorbed from t h e  capsule surface cover a d is tance  4, before 
co l l id ing  wi th  p a r t i c l e s  of t h e  ambient medium. This  dis tance,  which B.A.Mirtov 
(Bibl.7) c a l l s  "withdrawal" o r  removal, i s  shor t e r  t han  t h e  mean free p a t h  of 
t h e  p a r t i c l e s  of t h e  medium A ,  due t o  t h e  fact  t h a t  t h e  capsule moves i n  t h e  
wake of t h e  outgoing molecules. 

It can be demonstrated (Bibl.7) t h a t  t h e  d is tance  4 i s  correlated wi th  t h e  
mean free pa th  A a t  a given a l t i t u d e  by t h e  simple r e l a t i o n  

where v, and vo are t h e  v e l o c i t i e s  of t h e  desorbed molecules and of t h e  capsule, 
respect ively ( i f  VO vm or VO L vm 1. 

It follows from eq.(21.11) t h a t  t h e  d is tance  from only a s ta t ionary  capsule 
(vo = 0)  coincides with t h e  mean free pa th  ( A  = L o ) .  

L e t  us f ind  t h e  excess concentration of molecules as a result of desorp
t i o n  n: a t  a c e r t a i n  d is tance  x from t h e  surface of a spher ica l  capsule whose 
radius  i s  equal t o  Ro. 

The quantity n ' , in  a t h i n  spher ica l  layer of a thickness  d, located a t  a 
d is tance  x from t h e  surface,  w i l l  evident ly  be equal t o  

(22.11) 

where N, i s  t h e  number of desorbed molecules en ter ing  t h e  l a y e r  i n  u n i t  t i m e ;  
w i s  the  volume of t h e  layer; t i s  t h e  t r a n s i t  time of t h e  molecules over a 
d is tance  d. 

Let us s u b s t i t u t e  t h e  quant i t ies  enter ing eq.(22.II)  as follows: 

d 
CCJ = 4;rd (Rof x ) ~and t =I. 

v m  

Furthermore, l e t  us assume t h a t  t h e  concentration of desorbed molecules de
creases  with d is tance  from t h e  capsule, both as a result of co l l i s ions  wi th  
p a r t i c l e s  of t h e  medium and as a result of an inc rease  i n  occupied volume. It 
was  shown elsewhere (Bibl.7) t h a t  

_- X 

N , =  Noe ' (24.11) 

where No i s  the  number of molecules removed from t h e  sur face  of t h e  capsule i n  
u n i t  t i m e .  
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A s  a result of t h e  s u b s t i t u t i o n  of eqs.(23.11) and (24.11) i n t o  eq.(22.11) 
we f ind  t h a t  L2p 

The r e su l t an t  equation p e d t s  ca lcu la t ing  t h e  concentration of desorbed 
gases a t  a c e r t a i n  d is tance  x from t h e  capsule, neglecting c o l l i s i o n s  of these 
molecules with p a r t i c l e s  of t h e  ambient medium. 

B.A,Mirtov (Bibl.7) a l s o  derived an analogous expression f o r  t h e  concentra
t i o n  of molecules n:' re turn ing  t o  t h e  container after c o l l i s i o n  

W a 

(26 -11) 

where v:' i s  t h e  ve loc i ty  of t h e  returning molecules, a i s  a var iab le  of in tegra
t i o n  wit.h respect t o  a column of un i t  cross sec t ion  from x t o  ==. 

A t  t h e  capsule sur face  t h e  r a t i o  of  concentration of escaping nL t o  return
ing  n! molecules, as follows from eqs.(25.11) and (26.11), will be 

(27.11) 

Here, we have taken i n t o  account t h a t ,  a t  x = 0, t h e  value of t h e  i n t e g r a l  
i n  eq.(26.11) i s  approximately equal t o  1/R, if 4, % Ro. The results of calcula
t i o n  f o r  a capsule w i t h  a rad ius  Ro = 100 cm at various a l t i t u d e s  a r e  shown i n  
Table 2.11 (Bib1 .8 ) .  It was  assumed t h a t  t h e  ve loc i ty  of t h e  molecules a f t e r  
c o l l i s i o n  vi' i s  by one order  of magnitude g r e a t e r  than  t h e  ve loc i ty  before col
l i s i o n  v:. 

TABU3 2.11 

DISTANCE AND RELATIVE CONCENTRATIONS OF FETURNING MOLECULES 
AT VARIOUS ALTITUDES H I N  THE UPPER ATMOSPHERE 

150 2.103 1 .lo2 1.10-1 
200 101 5.102 2.10-2 
300 105 5.103 2.10-3 
500 10s 5.104 2.10-4 

It follows from Table 2.11 t h a t ,  i n  measuring t h e  dens i ty  or composition of 
t h e  atmosphere by means of instruments whose receiving surfaces are a t  t h e  level 
of t h e  capsule skin, t h e  e f f e c t  of returning molecules can be neglected f o r  &Q 
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t h e  d i r e c t  f l u x  of desorbed molecules a t  a l t i t u d e s  above 150 - 200 km. Conse
quently, we can do away with t h e  d i r e c t  f lux of desorbed molecules i f  t h e  re
ceiving aperture of t h e  instruments i s  d i rec ted  along a normal t o  t h e  surface of 
the  capsule. A t  a l t i t u d e s  below 150 h,a noticeable number of desorbed mole
cules returning after c o l l i s i o n  w i l l  always s t r i k e  t h e  instruments. 

Fig.4.11 &cess of P a r t i c l e  Concentration n: as a 
Function of t h e  Distance x at  Various Alti tudes.  

Based on eqs . (&.I I )  and (25.11), l e t  us estimate t h e  dens i ty  of t h e  
"cloud" of desorbed molecules c lose  t o  t h e  capsule surface.  W e  w i l l  consider, 
as done by B.A.Mirtov ( B i b l . 8 ) ,  t h a t  i n  t h e  case of monomolecular adsorption 
one square c e n t i m e t e r  i s  able t o  hold up t o  50 l aye r s  o f 6 1 d z  molecules each. 
Consequent1 on t h e  surface of t h e  capsule, equal t o  10 cm , a t o t a l  of 5 X 

x lo' x lo' "x  10" = 5 x 10"" molecules w i l l  be adsorbed. Considering t h a t  de
sorp t ion  occurs uniformly during one revolution of t h e  capsule around t h e  e a r t h  
( t  = 5000 sec ) ,  we obta in  No = lo'" molecules p e r  sec. 

The r e s u l t s  of ca lcu la t ion  of t h e  excess concentration n: a t  RO = 100 cm, 
$ = 4 x lo" cm/sec and vo = 8 x I O 5  cm/sec, f o r  a l t i t u d e s  of 100, 150, and 
300 km a r e  p l o t t e d  i n  Fig.4.11. It i s  apparent from t h e  diagram t h a t  t h e  higher 
t h e  f l i g h t  a l t i t u d e ,  t h e  more slowly w i l l  t h e  dens i ty  of t h e  desorbed molecules 
n', decrease with increas ing  d is tance  x from t h e  capsule surface.  Under these  
conditions, for example a t  an a l t i t u d e  of 300 km, t h e  concentration of desorbed 
molecules w i l l  remain a t  a maximum and be v i r t u a l l y  constant up t o  a d is tance  of 
about 1m fromethe capsule surface ( t h e  undisturbed concentration a t  this a l t i 
tude i s  n I= 10 ~ m - ~ ) .  

On t h e  b a s i s  of t h e  derived r e l a t i o n s  we can a l s o  estimate t h e  escape of 
gas from wi th in  t h e  capsule (outgassing) which i s  permissible from t h e  view
po in t  of measuring t h e  undisturbed s t r u c t u r a l  parameters of t h e  upper atmosphere. 
The estimate (Bibl.8) showed t h a t ,  i f  t h e  molecules of t h e  forward flow of 
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desorbed gases ( t h e  axis of t h e  instrument i n l e t  being d i rec ted  along t h e  
capsule radius)  do no t  s t r i k e  t h e  instrument, t h e  p e m i s s i b l e  value of outgas
s ing  f o r  a l l  a l t i t u d e s  i s  about Id"molecules p e r  second. 

L e t  us now estimate t h e  effect of dis turbances caused by t h e  f l i g h t  of 
t h e  container  on t h e  ion iza t ion  state of t h e  ambient medium. 

Naturally,  those  molecules t h a t  are r e f l ec t ed  from t h e  capsule according 
t o  t h e  e l a s t i c  c o l l i s i o n  l a w s  have t h e  g r e a t e s t  e f f e c t  on t h e  ion iza t ion  of t h e  
ambient medium. The add i t iona l  concentration a t  any d is tance  x from t h e  capsule, 
caused by r e f l e c t i o n  of molecules, can be found from eq.(25.11) by an  appropri
a te  change i n  t h e  parameters en ter ing  it. For ex le ,  a t  an a l t i t u d e  of 200 km 
t h e  undisturbed concentration of gas w i l l  be n = 3'em -3 (Bibl.7). Here, 
during one second a capsule 2f a cross  sec t ion  of  3 m" W i l l  cause r e f l e c t i o n  of 
No = Id"x 8 X lo5 X 3 x 10 = 2.4 X lo"" mol/sec ( i t  i s  assumed h e r e  t h a t  t h e  
ve loc i ty  of t h e  molecules i s  equal t o  vo = 8 x lo5 cm/sec). A ca lcu la t ion  based 
on this formula will yie,ld t h e  r e su l t an t  add i t iona l  concentration of molecules,

-3which i s  equal t o  3 X 10 em a t  t h e  capsule surface.  

The concentration of r e f l ec t ed  molecules re turning t o  t h e  container  after 
c o l l i s i o n  with p a r t i c l e s  of t h e  medium, according t o  eq.(26.11) will be about 
2 x 10" a t  t h e  surface of t h e  satel l i te .  With an increase  i n  a l t i t u d e ,  it 
wi l l  decrease i n  conformity With t h e  decrease i n  dens i ty  of t h e  atmosphere. 

Taking t h e  coe f f i c i en t  of i on iza t ion  by co l l i s ion ,  under these  conditions,  
t o  be CY = lo-*, B.A.Mirtov (Bibl.7) demonstrated t h a t  t h e  addi t iona l  i on iza t ion  
a t  t h e  capsule surface amounts t o  lo2 cme3. This value i s  by severa l  orders  
of magnitude less than  t h e  ion iza t ion  of t h e  medium ( lo5 t o  10" ) . 

The e f f e c t  of thermochemical reac t ions  on t h e  va r i a t ion  i n  composition of 
t h e  ambient medium i s  a l s o  negl ig ib le  (Bibl.8). 



PART I1 

MEASUREMENT OF THE PARAMETERS OF THE UPPER 
A’IMOSPHEFE AND SPACE 

Not only t h e  bas ic  meteorological elements, designated as s t r u c t u r a l  para
meters (temperature, pressure,  density,  and sometimes even composition of t h e  
atmosphere), but a l s o  t h e  parameters charac te r iz ing  t h e  fluxes of cosmic rays, 
corpuscles, meteor p a r t i c l e s ,  and t h e  state of t h e  magnetic and e l e c t r i c  f i e l d s  
are used f o r  describing t h e  state of t h e  upper atmosphere. 

The methods f o r  measuring such d iverse  parameters d i f f e r  g rea t ly  but t h e  
respective instrumentation used on rockets and space vehicles has a number of 
common c i r c u i t r y  elements which Will be discussed i n  Chapter V. 

CHAPTER I11 

MEASURE”’I O F  STHUCTURAL PARAMETERS 

Section 1. Measurement P r inc ip l e s-

A l l  s t r u c t u r a l  parameters are c lose ly  cor re la ted .  T h i s  re la t ionship  has a 
bearing on numerous measuring methods and on i n t e r p r e t a t i o n  of t h e  r e s u l t s .  

The gas pressure,  which i s  t h e  prime-average summary e f f e c t  of c o l l i s i o n s  
of p a r t i c l e s  with a given body, i s  

(1.111) 

where N i s  t h e  number of p a r t i c l e s  p e r  unit  volume, m i s  t h e  mass of t h e  gas 
p a r t i c l e s ,  and v i s  t h e  most probable ve loc i ty  of t h e  p a r t i c l e s .  

Equation (1.111) contains not only a k i n e t i c  determination of t h e  pressure  
but a l s o  of t h e  temperature. Actually, LE! 

aN=-
w ’  (2.111) 

where a i s  t h e  number of molecules i n  a c e r t a i n  volume w. 

Taking i n t o  account eq.(2.111), we obta in  

For one mole of gas t h e  quantity a equals t h e  Avogadro constant A. I n  this 
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case, we have 

Taking i n t o  account t h a t  t h e  equation of state pw = RT i s  rigorously v a l i d  
i n  t h e  f i e l d  of ordinary gas dynamics, we can wr i t e  

A mu2 1 nzv2T =___ -
R 2  k 2 '  

where k = -A i s  t h e  Boltzmann constant. 

Thus, t h e  molecular temperature T, determined by eq.( 5.111), charac te r izes  
o n l y  t h e  s t a t i s t i c a l  ( p r o b a b i l i s t i c )  k i n e t i c  energy of t h e  molecules. 

For t h e  upper atmosphere, by analogy, concepts of i o n  and e lec t ron  tempera
t u r e  are introduced depending on t h e  energy of motion of t h e  type of p a r t i c l e  
( e l ec t rons  or i ons )  it charac te r izes .  

Equations (1.111) and (5.111) y i e l d  a c o r r e l a t i o n  between t h e  pressure  p, 
t h e  p a r t i c l e  concentration N ,  and t h e  temperature T i n  t h e  form 

p = N k T .  (6 .111) 
We note t h a t  from eq.(S.III)  we a l s o  obta in  a r e l a t i o n  between t h e  m a x i "  

ve loc i ty  v at Maxwellian d i s t r i b u t i o n  (see Chapt.II), t h e  temperature T, and t h e  
mass of t h e  gas p a r t i c l e s  m, i n  t h e  form of 

The magnitude of t h e  s t r u c t u r a l  parameters varies as a function of a l l  pos
s i b l e  processes i n  t h e  atmosphere, with t h e  limits of such va r i a t ions  being 
rather wide. 

The average temperature d i s t r i b u t i o n s  of t h e  atmosphere with a l t i t u d e  over 
t h e  middle and subpolar l a t i t u d e s ,  i n  t h e  presence of high solar a c t i v i t y  
(Bib1.29) i s  p l o t t e d  i n  Fig.l.111. The diagram i n d i c a t e s  t ha t ,  a t  t h e  a l t i t u d e  
of t he  upper l i m i t  of t h e  mesosphere (about 80 km), t h e  temperature of t h e  atmos
phere i s  minimal (130 - 160°K). In  t h e  thermosphere, t h e  temperature continu- & 
ously increases  with height, reaching 1500 - 1800°K at  a level of about 500 km 
and 2000 - 3000°K at  a level of about 1000 km (Bibl.3, 29). A t  t h e  limit of t h e  
ionosphere (about 3000 km), t h e  temperature i s  estimated as being of t h e  order 
of 4OOO"K, while i n  ionterplanetary space a t  a d i s t ance  of 3 - 4. e a r t h  r a d i i  from 
t h e  earth, it i s  5000 K. 

The atmospheric pressure  a t  an a l t i t u d e  of about 50 km i s  approximately
lo" times less than at  t h e  ear th ' s  surgface; at  an a l t i t u d e  of about 100 km it i s  
10" times less and a t  about 200 km, 10 times less than at  t h e  ear th .  
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The densi ty  of t h e  atmosphege a t  heights of 100, 200, 300 kmis of t h e  order 
of and gm/cm respectively.  The concentration of neut ra l  
p a r t i c l e s ,  molec%es, and atoms markedly drops % t h  a l t i t u d e ,  f o r  example, from
Id” particles/cm a t  100 k n  t o  lo” particles/cm at  about 1000 km. 

hm 

Fig.l.111 Average Temperature Dis t r ibu t ion  with Height 
i n  t h e  Atmosphere. 

I n  t h e  ionosphere, t he  concentration of ions and e lec t rons  decreases much 
more slowly w i t h  a l t i t u d e  and, a t  low a l t i t u d e s  of t h e  ionosphere, it markedly 
f luc tua tes  during t h e  day and during t h e  year.  The concentration of ions or 
electrons a t  1003km i s  ( 2  - 100) 10 particles/cm3 and at  1000 Ism about 
lo5 particles/cm ( B i b l . 3 ) .  A t  g rea te r  a l t i t u d e s ,  t h e  concentration of charged 
p a r t i c l e s  begins t o  predominate over t h e  concentration of neut ra l  p a r t i c l e s  ( see  
Table 1.IV). 

A de ta i led  r e v i e w  of ava i lab le  information on t h e  s t r u c t u r a l  parameters of 
t h e  atmosphere and t h e i r  v a r i a b i l i t y  i s  given i n  t h e  monograph by 1.A.Khvostikov 
(Bib1.29) and i n  a number of o ther  works (Bibl.5, 19,  44, e tc . ) .  

The results of measurements of t h e  s t r u c t u r a l  parameters of t h e  atmosphere 
are espec ia l ly  a f fec ted  by environmental disturbances,  formed c lose  t o  t h e  in
strumented capsule, and by t h e  e f f e c t  of rad ia t ion  fluxes on t h e  instrument 
sensors, espec ia l ly  by s o l a r  radiat ion.  A s  a consequence, t h e  instrument read
ings w i l l  differ g rea t ly  from t h e  value of t h e  parameters of an undisturbed 
atmosphere. Under t h e s e  conditions it i s  of utmost importance t o  allow f o r  t h e  
methodological e r r o r s  of measurements, whereas t h e  f e a s i b i l i t y  of d i r e c t  measure
ments of t h e  s t r u c t u r a l  parameters by some p a r t i c u l a r  method i s  determined by 
t h e  accuracy of accounting f o r  t h e  in t e rac t ion  of t h e  instrument with t h e  ambient 
medium. 

Section 2. Direct- Temperature Measurements of t h e  @per Atmosphere 

Direct thermometry i s  widely and e f f ec t ive ly  car r ied  out by Soviet  meteoro
log ica l  rockets of t h e  MR-1 series. 

The boom of t h e  rocket ( see  Fig.l .I) ,  i n  i ts center  port ion,  c a r r i e s  
e l e c t r i c  res i s tance  thermometers (5)  made of tungsten wire 4.0 p i n  diameter 
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(Bibl.2). The wire i s  s t re tched  on in su la t ed  metal p l a t e s  and connected t o  an 
unbalanced measuring bridge. 

The thermometer i s  ca l ib ra t ed  i n  a wide temperature range T, under labora
t o r y  conditions. A s  a r e s u l t  of ca l ibra t ion ,  a func t ion  of t h e  type U o u t  = 
= f(T,) i s  obtained, where U o u t  i s  t h e  voltage i n  t h e  r a t i o  arms of t h e  bridge. 

To determine t h e  temperature of an undisturbed medium T,, based on t h e  
measured temperature of t h e  thermometer wire T,, d i s t o r t i n g  f a c t o r s  are taken 
i n t o  account. The method i s  based on an ana lys i s  of t h e  phys ica l  aspect of t h e  
phenomena and allowance i s  made f o r  f a c t o r s  t h a t  subs t an t i a l ly  a f f e c t  t h e  r e s u l t  
of t h e  measurements a t  high a l t i t u d e s ,  as a consequence of t h e  low heat exchange 
between t h e  thermometer and t h e  ambient medium. 

To obta in  t h e  mathematical formula, l e t  us w r i t e  t h e  equation of t h e  heat  
balance of t h e  thermometer wire wi th  t h e  following notations:  4. = length,  d = 
= diameter, s and w = area of sur face  and volume, R, e,, and p w  = res i s tance ,  
spec i f i c  heat, and dens i ty  of t h e  wire material. 

The components of t h e  hea t  balance of t h e  wire Will be designated i n  terms 
of dQ, (where n = 1, 2, ...). 

Using these  notations,  we w r i t e  

dQ =PPC&T,, ( 8.111) 

where dQ i s  t h e  change i n  enthalpy of t h e  wire on a change i n  i t s  temperature 
by dT degrees i n  t h e  t i m e  d7. 

The heat  ga in  from an i n t e r n a l  source i s  

dQi =0.24i2Rdz . (9.111) 

This heat i s  l i b e r a t e d  due t o  heating of t h e  wire by the  current of  t h e  
measuring c i r c u i t  during t h e  same t i m e  i n t e r v a l  d7. 

The balance component dQ t akes  i n t o  account t h e  hea t  received by t h e  wire 
from fluxes of short-wave and long-wave rad ian t  energy s t r i k i n g  i t s  surface 
(with allowance f o r  r ad ia t ion  lo s ses ) .  I n  t h e  mathematical expression of this 
term of t h e  balance, we must t a k e  i n t o  account t h e  mutual pos i t i on  of t h e  wire 
and t h e  boom of t h e  rocket. Figure 2.111 shows t h a t  not t h e  e n t i r e  surface of 
t h e  wire i s  s t ruck  by t h e  rad ian t  f luxes  F and t h a t  t h e  wire a l s o  receives t h e  
radiant energy r e f l e c t e d  and rad ia ted  by t h e  boom. 

Let us introduce t h e  following add i t iona l  no ta t ions :  F1 and Fa = d e n s i t i e s  
of t h e  short-wave and long-wave rad ian t  f luxes ,  el and 62 = coe f f i c i en t s  of ab
sorp t ion  of t h e  short-wave and long-wave rad ian t  energy f o r  t h e  wire, ea = coef
f i c i e n t  of r a d i a t i o n  of t h e  wire and boom, AI and A2 = coe f f i c i en t s  of r e f l e c t i o n  
by t h e  boom of short-wave and long-wave rad ian t  energy respec t ive ly ,  sn (where 
n = 1, 2, ...) = e f f e c t i v e  surfaces of t h e  wires f o r  various radiant fluxes, 
Tb = terrperature of t h e  boom, CI = r ad ia t ion  constant. 
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Using these notations,  we write 

where t h e  quantity C i s  t h e  r ad ia t ion  balance of t h e  r e s i s t ance  wire. 

To ca l cu la t e  t h e  dynamic heating of  t h e  thermometer, l e t  us introduce i n t o  
t h e  usual equation of convective of heat t r a n s f e r  t h e  average temperature T,, of 
t h e  a i r  stagnant a t  t h e  boundary l a y e r  of t h e  wire. I n  this case, t h e  heat gain 
produced by t h e  i n t e r a c t i o n  of t h e  thermometer wi th  t h e  gas stream Will have t h e  
f o m  

dQ3 =a(%"- T,)s dr , (11.111) 

where CY i s  t h e  heat t r a n s f e r  coe f f i c i en t  of t h e  r e s i s t ance  wire t o  t h e  r e l a t i v e  
flow (whose magnitude depends on t h e  Reynolds and Prandt l  numbers). 

r i \  

Fig.2.111 Mutual Arrangement of Thermometer W i r e  
and Rocket Boom. 

The temperature T,, cam be determined i n  terms of the  recovery coe f f i c i en t  
of t h e  thermometer 

7r = _AV- T m  (12.111)
To- Tm 

where To i s  t h e  stagnation temperature. 

The value of t h e  coe f f i c i en t  r, f o r  d i f f e r e n t  measuring conditions, can be 
determined experimentally. 

From eq.(12.III), we ob ta in  
7- -T.*.+ r (To-Tm)=T ,  +rv,2 T - 1___w 

2RT ' (13.III) 

CP , v, i s  t h e  ve loc i tywhere y i s  t h e  r a t i o  of t h e  s p e c i f i c  heats of t h e  gas 7 
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of t h e  undisturbed flow as a result of which aerodynamic heating occurs, and R 
i s  t h e  gas constant. 

Taking i n t o  account eq.(13.111), we ob ta in  from eq . ( l l . I I I )  

The balance component allowing f o r  t h e  flow of heat from t h e  r e s i s t ance  
wire t o  t h e  boom through t h e  holders (corner p l a t e s )  

dQh=h(Tb - T J s ' d r ,  (15.111) 

where s' i s  t h e  area of contact of t h e  wire w i t h  t h e  holders and h i s  t h e  M 
thermal conductivity of t h e  holders. 

The equation of heat balance of t h e  wire i s  w r i t t e n  i n  t h e  following form: 

dQ =dQ* 4- dQ2 f dQ3 dQ6. (16.111) 

Subs t i tu t ing  i n t o  th5s formula t h e  expressions obtained f o r  t h e  components, 
we obtain t h e  computational equation 

Considering t h a t  c w p w w  i s  t h e  coe f f i c i en t  of i n e r t i a  of t h e  wire w h i l e  
Q S  

c_ 
"' - 5 i s  t h e  c o e f f i c i e n t  experimentally der ivable  f o r  a given design of t h e  
Q S  

thermometer sensor, we can wr i t e  t h e  computational formula i n  f i n a l  form: 

i2RT ,  =T,., -rvL - - I  - ~ 

c 
-0.24 __ +

247 as as 

+-q 
dTw -1- E (T, - T b ) .  

(18.111) 

dr 

We should mention again t h a t ,  during motion of t h e  rocket, t h e  thermometer 
gradually en te r s  i n t o  ever more r a re f i ed  layers of t h e  atmosphere i n  which t h e  
conditions and l a w s  of heat t r a n s f e r  become complicated. This physical  f a c t  i s  
taken i n t o  account by using various coe f f i c i en t s  r and cy i n  areas of ordinary 
gas dynamics and r a r e f i e d  gas dynamics. 

The terms of eq.(18.111) can be t r e a t e d  as cor rec t ions  f o r  poss ib l e  e r r o r s  
i n  t h e  temperature T, measurement, produced by t h e  measurement technique. We 
see t h a t  only t h e  cor rec t ion  f o r  i n e r t i a  ( f i f t h  term) and inflow of heat from 
t h e  holders ( s i x t h  term) can have a va r i ab le  sign, whereas a l l  o ther  terms are 
e s s e n t i a l l y  negative. T h i s  means t h a t  t h e  considered f a c t o r s  render t h e  
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readings of t h e  thermometer too  high. 

Fqe r imen ta l  i nves t iga t ions  by P.P .Alekseyev and o thers  (Bibl.2) showed 
t h a t ,  f o r  t h e  thermometer under consideration, a l l  cor rec t ions  except t h e  correc
t i o n s  f o r  aerodynamic heating of t h e  thermometer (second term) are neg l ig ib l e  
up t o  an a l t i t u d e  of about 50 km where t h e  atmosphere behaves as a continuum. ,/&
The cor rec t ion  f o r  aerodynamic heating takes  i n t o  account t h e  e f f e c t  of stagna
t i o n  of t h e  f l o w  a t  t h e  boundary l a y e r  of t h e  wire, as a consequence of which t h e  
thermometer receives not only t h e  energy of t h e  thermal a g i t a t i o n  of t h e  mole
cules but a l s o  t h e  k i n e t i c  energy of t h e i r  ordered motion wi th  a ve loc i ty  v,. 
T h i s  cor rec t ion  i s  e s s e n t i a l  f o r  a l l  a l t i t u d e s ,  at  a s u f f i c i e n t  ve loc i ty  of 
motion of t h e  thermometer. 

I n  t h e  50 - 70 km a l t i t u d e  range, where t r a n s i t i o n  t o  t h e  area of r a re f i ed  
gas dynamics takes place,  t h e  o ther  cor rec t ions  are not very l a r g e  but markedly 
increase  a t  a l t i t u d e s  above 70 km where it i s  absolu te ly  necessary t o  t a k e  them 
i n t o  consideration. 

Excessive complications i n  ca lcu la t ing  t h e  temperature T, from eq.(18.111) 
are produced by t h e  f a c t  t h a t  t h e  parameters r and CY depend on t h e  temperature 
of t h e  ambient medium. To overcome this d i f f i c u l t y ,  t h e  ca lcu la t ions  of t h e  
temperature of t h e  upper atmosphere a r e  made by severa l  ( two  or t h r e e )  approxi
mations. The f i r s t  approximation i s  calculated by means of eq.(18.111) i n  
which r and cy are taken a t  t h e  average temperature a t  a given height. The 
second and subsequent approxLmations are ca lcu la ted  from t h e  parameters r and CY 
taken a t  t h e  temperature T, which was found i n  t h e  preceding approximation. 

I n  deriving t h e  computational equation f o r  tak ing  methodological e r r o r s  
i n t o  consideration, we assumed t h a t  t h e  r e s i s t ance  wire i s  i n  t h e  air flow out
s ide  t h e  boundary l a y e r  of  t h e  boom. A s  t h e  rocket moves a t  c e r t a i n  angles of 
a t t ack ,  this condition might be disturbed. To eliminate t h e  r e s u l t a n t  e r ro r s ,  
fou r  thermometers whose wires are s t re tched  along t h e  boom are placed around i t s  
circumference. 

To ca l cu la t e  T, from eq.(18.111), we must know, i n  add i t ion  t o  t h e  tempera

dTwt u r e  T, measured by t h e  thermometer, t h e  de r iva t ive  -obtained during t h ed7 
measurements; t h e  temperature of t h e  boom Tb measured by an auxiliary thermo
meter a t  t h e  boom, t h e  values of t h e  rad ian t  f luxes  F1 and FZ measured by bolome
ters mounted t o  t h e  boom (c lose  t o  t h e  body of t h e  rocke t ) ;  ve loc i ty  of t h e  
rocket vm which i s  determined from eyeball ,  photographic, or radar  s igh t ing  of 
i t s  f l i g h t .  

The ca lcu la t ions  performed by o the r  authors (Bibl.2) showed t h a t  t h e  mean-
square e r r o r  of ind iv idua l  temperature m e p r e m e n t s  by t h e  described method up 
t o  an a l t i t u d e  of 40 km d id  not exceed *5 ; at  an a l t i t u d e  of 50 km, it was +loo 
and a t  a l t i t u d e s  of 70 - 75 km, already *20°. 

For a check, temperature ca lcu la t ions  based on measured pressures  are 
simultaneously performed, as was done i n  soundings by rockets carrying no 
thermometers f o r  t h e  ambient atmosphere, f o r  example, i n  t h e  USA (Bib1.U). The 
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ca lcu la t ions  are based on t h e  barometric formula which, according t o  t h e  esti
mtes of various authors,  i s  va l id  up t o  an a l t i t u d e  of several hundreds of 
kilometers . 

From t h e  barometric formula LL! 
(19.III) 


where M i s  t h e  molecular weight of t h e  air, g t h e  acce le ra t ion  of grav i ty ,  and 
R t h e  universal  gas constant,  it follows t h a t  t h e  average temperature i n  a l a y e r
of a thickness Az, where t h e  pressure  va r i e s  by t h e  quant i ty  A I n  p = In p1 -
- In pa ,  will be equal t o  

(20.111) 


Furthermore, i n  t h e  USA regular  thermometry up t o  heights of t h e  order of 
60 km i s  accomplished by parachute radiosondes e j ec t ed  from meteorological 
rockets. A thermis tor  i s  used as rece iver  i n  t h e  radiosondes (Bib1.39). 

An o p t i c a l  method :or measuring t h e  temperature was used i n  t h e  launchings 
of t h e  French rocket "Veronique" (Bibl.33). T h i s  was  based on measuring t h e  
width of t h e  resonance l i n e s  of t h e  yellow doublet of atomic sodium. A sodium 
cloud e jec ted  a t  a l t i t u d e s  of 100 - 180 km was rendered luminescent by tw i l igh t  
s o l a r  rays.  The measurements were taken over a ground-based high-transmission 
spectrograph, equipped with a standard cuvet te  f i l l e d  wi th  sodium vapors. The 
height of ind iv idua l  p o i n t s  of temperature measurement was determined by tri
angulation. 

The method of detonating s h e l l s  released from a rocket a t  c e r t a i n  i n s t a n t s  
of time, which i s  used i n  t h e  USA (Bibl.7, 40, a)t o  measure speed and direc
t i o n  permits a l s o  a ca l cu la t ion  of t h e  temperature of t h e  atmosphere. The d e  
tona t ions  of t h e  s h e l l s  are recorded by ground sound-ranging equipment. The 
acous t ic  method of measuring t h e  temperature i n  this case proves usefu l  up t o  a 
height of 80 km and even more (Bib1.29). 

A widely used method i s  t h a t  of f a l l i n g  b a l l s ,  containing a radio trans
mitter which t ransmi ts  s igna l s  t o  a d i r e c t i o n  f inder .  The dens i ty  i s  calculated 
from t h e  equation of t h e  f l i g h t  of t h e  b a l l  (Bib1.33), under consideration of 
t h e  wind. 

Other methods have been developed f o r  determining t h e  dens i ty  and tempera
t u r e  [observation of t h e  d i f fus ion  of sodium vapors (Bibl.31), measurement of 
t h e  fluxes of X-rays (Bib1.35, 36) and others].  

Sec t ion  3. Manometers f o r  Measuring Low Pressures 

The range of pressures  subject t o  measuremen2 i n  t h e  launch of various 
c a r r i e r s  i s  extremely wide: from 700 - 800 to 10- - lo-'' mm Hg. To cover 
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such a pressure range, it i s  necessary t o  use manometers with various measuring 
ranges or even d i f f e r e n t  types of pressure  gages. Let us examine t h e  p r i n c i p a l  
types, with emphasis on manometers f o r  measuring pressures  i n  t h e  upper l e v e l s  @ 
of t h e  atmosphere. 

P 

I 

Fig.3.111 Wiring Diagram of a Membrane 
Resistance Transducer (MRT) . 

f -

Fig.k.111 	 W i r i n g  Diagram of a Hot-wire 
Gage (P i r an i  Type). 

To measure high pressures  on meteorological rockets, ordinary membrane re
s i s t ance  transducers (MRT) are used. The sensing element of t h e  MRT i s  a mem
brane box (1)(Fig.3.111) connected with a r e s i s t ance  transducer (2).  The lat
t e r  i s  connected i n t o  t h e  c i r c u i t  of an unbalanced bridge. These elements of 
t h e  MRT are discussed i n  d e t a i l  i n  t h e  literature devoted t o  meteorological and 
aero logica l  measurements (Bibl.12, 13).  The unbalance voltage of t h e  bridge 
U o u t  i s  fed across t h e  cormnutator t o  t h e  telemetry system of t h e  rocket ( s ee
Chapt.1, Sect.1). The limits of app l i ca t ion  of various types  of MET encompass 
t h e  range from about 760 t o  5 mm Hg (Bibl.2). 

Hot-wire gages (P i ran i  type) are used i n  t h e  pressure  range from several 
millimeters t o  thousandths of a millimeter of mercury. The mode of operation of 
t hese  instruments i s  based on t h e  dependence of t h e  heat l o s s  of t h e  heated body 
( f i lament )  on t h e  gas pressure  i n  t h e  volume of t h e  gage i f  t h e  diameter of t h e  
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wire i s  commensurable with t h e  mean free pa th  of t h e  molecules. 

The hot-wire gage i s  a g l a s s  cy l inder  communicating with t h e  atmosphere, 
i n t o  which a t h i n  tungsten fi lament (1)i s  sealed (Fig.4.111). 

The equation of t h e  heat balance of t h e  fi lament i n  a steady state when t h e  
temperature of t h e  filament and i t s  re s i s t ance  are constant, Tf = const and & = 
=- const, will have t h e  form 

0.21i2RRf=Qi + Qz +Q 3 ,  ( 21.111) 

where i i s  t h e  cur ren t  s t rength ;  Ql i s  t h e  thermal f lux  transported by t h e  gas 
p a r t i c l e s  t o  t h e  walls of t h e  cylinder;  (22 i s  t h e  heat l o s t  by t h e  filament 
owing t o  rad ian t  heat t r a n s f e r  t o  t h e  w a l l s  of t h e  cy l inder ;  Q3 i s  t h e  hea t  f lux  
a r r iv ing  a t  the  cy l inder  along t h e  filament holders. 

The heat transported by t h e  gas p a r t i c l e s  from u n i t  surface of a fi lament 
i n  u n i t  t i m e  at low gas pressures  (Bibl.12) i s  equal t o  

Qi = ckap(T,-T) , ( 22 .111) 
where c i s  a constant depending on t h e  atomicity of t h e  gas; k i s  t h e  coe f f i c i en t  
of accommodation charac te r iz ing  t h e  e f f ic iency  of t h e  processes of energy 
t r a n s f e r  between t h e  gas molecules and t h e  sur face  of t h e  heated filament; CY i s  
t h e  coef f ic ien t  of molecular thermal conductivity of t h e  gas; p and T are t h e  
pressure  and temperature of t h e  gas i n  t h e  volume of t h e  gage; T, i s  t h e  w a l l  
temperature of t h e  cy l inder  of t h e  gage. 

The measuring c i r c u i t  of t h e  manometer i s  s o  l a i d  out t h a t  t h e  e f f e c t  of 
thermal fluxes Q1 and Q, which do not depend on gas pressure,  i s  excluded. For 
this, t h e  arm (2) ,  s i d l a r  i n  design t o  t h e  sensing element (l), does not com
municate w i t h  t h e  atmosphere (t  = const) but i s  connected i n t o  t h e  bridge c i r c u i t  
(Fig.4.111). Furthermore, t h e  tungsten fi lament has a low rad ia t ion  coe f f i c i en t ,  
and i t s  temperature i s  low [Tf < 150 - 200°C (Bib1.12)l. Thanks t o  this, t h e  
output voltage of t h e  bridge c i r c u i t  U o u t  (at  constant feed voltage U f e e d  and 
w a l l  temperature of t h e  cy l inder  T,) depends only on t h e  pressure p. The quanti
t y  T, i s  usually measured by an aux i l i a ry  c i r c u i t  so  as t o  allow f o r  t h e  e f f e c t  
of t h e  cy l inder  temperature on t h e  instrument readings. 

The l i m i t s  of a p p l i c a b i l i t y  of eq.(22.III) are determined by t h e  mean f r e e  
pa th  of t h e  gas molecules and by t h e  diameter of t h e  hot-wire gage filament. 
When using a filament with a diameter of 13 p, t h e  instrument w i l l  s a t i s f a c t o r i 
l y  operate i n  t h e  pressure  range from 5 t o  0.1m Hg. The use of a heavier 
filament with a diameter of 60 p, which has a higher thermal i n e r t i a  ( see  
Sect.2) permits using hot-wire gages with a pressure  range from 0.3 t o  5 x 
x loe3 mm Hg (Bibl.2), i.e., up t o  an a l t i t u d e  of about.100 km. 

Equipment of this type i s  used i n  t h e  USA, i n  p a r t i c u l a r  on t h e  Deacon 
rockets (Bib1.29). Ion iza t ion  gages of various types are s u i t a b l e  f o r  measuring 
extremely low pressures  i n  t h e  upper atmosphere. 

T h e m d  ion iza t ion  gages, o r  simply i o n i z a t i o n  gages, operate on the  basis 



of t h e  pressure  dependence of a current of p o s i t i v e  i o n s  formed through ioniza
t i o n  of t h e  gas i n  t h e  body of t h e  gage by e lec t rons  emitted f r o m t h e  heated 
filament. The simplest gage of this type i s  t h e  t r i ode ,  whose cavi ty  i s  con
nected with t h e  gaseous medium being measured. 

It i s  poss ib le  t o  connect t h e  ion iza t ion  gage i n t o  a c i r c u i t  with external 
and i n t e r n a l  control.  I n  t h e  first case, t h e  g r i d  of t h e  t r i o d e  i s  f ed  an & 
acce lera t ing  p o t e n t i a l  p o s i t i v e  with respect t o  t h e  cathode (100 - 300 v), w h i l e  
a small p o t e n t i a l  (from -2 t o  -30 v) negative with respect t o  t h e  cathode i s  
supplied t o  t h e  anode which serves as a c o l l e c t o r  of p o s i t i v e  ions.  The magni
tude o f ' t h e  acce lera t ing  p o t e n t i a l  of t h e  g r i d  V, should ev ident ly  be g rea t e r  
than t h e  ion iza t ion  p o t e n t i a l  Vi of t h e  gas whose pressure  i s  being measured. 
The negative p o t e n t i a l  of t h e  anode V, should not on ly  promote t h e  trapping of 
p o s i t i v e  ions  from t h e  cav i ty  of t h e  gage but  should a l s o  prevent t h e  impinge
ment of e lec t rons .  The cur ren t  i n  t h e  anode c i r c u i t  i s  t h e  quantity measured. 

When t h e  c i r c u i t  i s  connected with i n t e r n a l  control,  t h e  i o n  c o l l e c t o r  i s  
t h e  g r i d  of t h e  tube t o  which a negative p o t e n t i a l  i s  f ed  w h i l e  t h e  acce lera t ing  
p o t e n t i a l  i s  applied t o  t h e  anode. -The c i r c u i t  with ex te rna l  con t ro l  i s  i n  much 
wider use s ince  it ensures a high magnitude of t h e  c o l l e c t o r  current.  T h i s  i s  
due t o  t h e  f a c t  t h a t ,  i n  t h e  first case, t h e  d i s t r i b u t i o n  of t h e  p o t e n t i a l  be
tween t h e  e lec t rodes  causes o s c i l l a t i o n s  of t h e  e l ec t rons  c lose  t o  t h e  g r i d  
( they  f l y  through t h e  g r i d  and are repe l led  first by t h e  anode-collector and 
then by t h e  cathode), thanks t o  which t h e i r  mean free pa th  and t h e  p robab i l i t y  
of i on iza t ion  of t h e  gas increase.  

Fkperimental and t h e o r e t i c a l  i nves t iga t ions  (Bibl.11, 20) showed tha t ,  w i t h  
both methods of connecting t h e  gages, t h e  i o n  current 4 i s  propor t iona l  within 
wide limits t o  t h e  gas pressure  p and t h e  e l ec t ron  emission current i,, i.e., 

i, = k i - p  , (23.III) 

where k i s  a constant depending on t h e  design of t h e  gage (on shape, material, 
placement, and s i z e  of t h e  e lec t rodes)  and a l s o  on i t s  operating conditions 
(magnitudes of t h e  p o t e n t i a l s  applied t o  t h e  e lec t rodes)  . 

The s e n s i t i v i t y  of t h e  gage S i s  represented by t h e  r a t i o  of t h e  co l l ec to r  
current t o  t h e  pressure  

Sz--di, - ki- =-i+ 
dP P 

The theory of i on iza t ion  gages (Bibl.20, 21), based on t h e  assumption t h a t  
t h e  e lec t rodes  are in t h e  form of concentric cy l inders  (without consideration of 
recombination), l eads  t o  t h e  following expression f o r  t h e  s e n s i t i v i t y  i n  t h e  
case of a c i r c u i t  with external control:  

W P  [?-(V --v. u -u. 
(25 .III)s-----

V9 4 1 


where V, and Vi are t h e  g r i d  and gas ion iza t ion  p o t e n t i a l s ,  respectively; B i s  a 
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constant depending on t h e  gas p rope r t i e s  ( f o r  example, f o r  molecular nitrogen, 
l3 = 160, and f o r  neon l3 = 300); B i s  a constant tak ing  i n t o  account t h e  p o t e n t i a l  
d i s t r i b u t i o n  between t h e  e lec t rodes  of t h e  gage and t h e  absorption of elec- fi 
t rons  by t h e  g r i d  during t h e i r  o s c i l l a t i o n  near it. T h i s  can be determined upon 
c a l i b r a t i o n  of t h e  gage. 

Consequently, t h e  s e n s i t i v i t y  of i o n i z a t i o n  gages depends on t h e  p rope r t i e s  
of t h e  gas f i l l i n g  t h e  cav i ty  and a l s o  on t h e i r  design features and operating 
conditions. Fxperiments have shown t h a t  t h e  s e n s i t i v i t y  S i s  approximately 
propor t iona l  t o  t h e  t o t a l  number of e l ec t rons  contained i n  a molecule of gas or 
vapor [ t h e  s e n s i t i v i t y  f o r  helium i s  low, being about 0.18 i n  comparison with 
a i r  ( B i b l . l l ) ] .  The upper limit of t h e  measured pressures  can be r a i sed  t o  
lo-” - 10‘” m Hg (Bib1.22) e This limit i s  given by t h e  occurrence of cathode 
“poisoning” and cathode cooling as a result of increased heat t-pansfer upon in
crease i n  pressure  ( t h i s  l eads  t o  an appreciable drop of t h e  emission cur ren t )  
and a l s o  by poss ib l e  overheating of t h e  cathode or of t h e  heating element. 

The lower limit i s  given by t h e  decrease i n  t h e  signal-to-noise r a t i o .  
Noises arise mainly as a consequence of photoionization of t h e  material i n  t h e  
c o l l e c t o r  under t h e  e f f e c t  of s o f t  X-radiation emitted by t h e  g r i d  under bombard
ment by electrons.  The photocurrent from t h e  c o l l e c t o r  increases  t h e  measured 
current i+ ,  leading t o  a d i s t o r t i o n  of t h e  measurement r e s u l t s .  The lower limit 
of measurements i s  t h e  pressure  p a t  which t h e  i o n  cur ren t  becomes comparable 
w i t h  t h e  photocurrent of t h e  co l l ec to r .  To reduce t h e  lower l i m i t ,  t h e  ioniza
t i o n  gages a r e  designed so t h a t  t h e  hot cathode i s  loca ted  outs ide  t h e  cy l indr i 
c a l  g r i d  (on t h e  s i d e )  r a t h e r  than i n s i d e  it. Ins ide  t h e  g r i d  i s  placed t h e  
c o l l e c t o r  made i n  t h e  form of a t h i n  fi lament ( t o  reduce t h e  photosens i t ive  
sur face) .  The g r i d  i s  made of a material wi th  a low atomic number ( t o  reduce 
t h e  bremsstrahlung). The pa th  of t h e  e l ec t rons  i n  this gage design i s  su f f i 
c i e n t l y  long and i t s  s e n s i t i v i t y  i s  not reduced. 

The l i b e r a t i o n  of tungsten vapors heated by t h e  cathode, having a tension 
of about 10-l”mm Hg, r e s t r i c t s  t h e  lower limit of pressures  measurable by a 
gage of this design t o  a magnitude of t h e  order of m Hg (Bibl.8). 

For t h e  i o n  current i+t o  be r e l a t e d  wi th  t h e  gas pressure  by a l i n e a r  de
pendence [eq.(23.111)1 i t  i s  necessary t o  s t a b i l i z e  t h e  magnitude of t h e  anode 
current i, and t h e  work func t ion  of t h e  e lec t rodes  of t h e  gage. A s u f f i c i e n t  
degree of s t a b i l i z a t i o n  of t h e  lat ter i s  provided by using gas-discharge s tab i 
l i z e r s  or by using galvanic c e l l s .  The problem of s t a b i l i z i n g  t h e  current i
i n  a wide range of measured gas pressures  and i n  t h e  presence of i t s  va r i ab le  
composition i s  much more d i f f i c u l t  s ince  i n  this case t h e  emissivity of t h e  
cathode w i l l  vary. 

Numerous c i r c u i t s  are i n  existence f o r  s t a b i l i z i n g  t h e  anode current 
(B ib l . l l ) ,  based on introducing a negative feedback between t h e  anode cur ren t  & 
and t h e  fi lament current of t h e  cathode. All of these  are of excessive weight, 
s i ze ,  and power c o n s q t i o n .  To eliminate these  shortcomings, t e t rode  ioniza
t i o n  gages such as t h e  IM-7 have been developed i n  t h e  USSR (Bib1.23), which are 
used for measuring pressures  up t o  a l t i t u d e s  of 500 km (Bib1.15). 

I n  this gage, s t a b i l i z a t i o n  of t h e  emission current i s  accomplished by an 
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auxiliary f l a t  g r id  (4) (Fig.5.111) placed between t h e  anode g r id  (1)and t h e  
cathode (3). The la t te r  i s  made of a t u n  s t e n  wire 0.05 mn i n  diameter and i s  
arranged asymmetrically (on t h e  periphery7. The cy l ind r i ca l  anode g r id  (1)i s  
made of n i cke l  wire 0.2 mm i n  diameter. The c o l l e c t o r  of t h e  gage (2)  i s  made 

Fig.5.111 Schematic Diagram of Tetrode Ionizat ion Gage. 

i n  the  form of a tungsten wire 0.1" i n  diameter, mounted along t h e  a x i s  of t h e  
anode gr id .  To reduce leakage i n  t h e  co l l ec to r  c i r c u i t  i t s  lead-out i s  placed 
on the  cyl inderof  t h e  gage. The input  of t h e  gage c a r r i e s  a vapor-deposited 
guard r ing  ( 5 )  which i s  under a s u f f i c i e n t l y  high p o t e n t i a l  t o  prevent penetra
t i o n  of pos i t i ve  ions  from t h e  ambient medium i n t o  t h e  working volume. The & 

t e l e m e t r y  s y s t e m )  

Fig.6.111 Wiring Diagram of Tetrode Ionizat ion Gage. 

operating conditions of t h e  IM-7 gage are character ized by the  following 
voltages: anode-cathode +a0v, collector-cathode -60 v, cont ro l  grid-cathode 
from -10 t o  +20 v, cathode fi lament 6.7 v. The anode current  i s  equal t o  3 ma, 
while t h e  fi lament current  of t h e  cathode i s  0.55 amp. The s e n s i t i v i t y  of t h e  
gage under these  conditions i s  S = 0.025 amp/" Hg (with respect  t o  air). The 
limits of i t s  use are from t o  lo-' mm Hg (Bibl.8). 

A c i r c u i t  (Fig.6.111) with a negative feedback i s  used t o  s t a b i l i z e  t h e  
anode current  of t h e  t e t rode  gage M. The coe f f i c i en t  of s t a b i l i z a t i o n  of t h e  
anode current  i n  this c i r c u i t  i s  determined mainly by t h e  transconductance of 
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t h e  t r i o d e  po r t ion  of t h e  gage and by t h e  magnitude of t h e  feedback r e s i s t ance  
Rc. The la t te r  simultaneously determines t h e  negative b i a s  at t h e  co l l ec to r .  

Fig.7.111 Schematic Diagram of Alphatron.
1- Control electrode; 2 - Collector;  

3 - w-particle source. 

The i o n  cur ren t  of t h e  gage at  low gas pressures  and a t  t h e  ind ica ted  
value of S i s  low (at  p = mm Hg, t h e  current = 2.5 X amp). There
fo re ,  direct-current ampl i f ie rs  are used with a s u f f i c i e n t l y  high input  resist
ance and a high ampl i f ica t ion  f ac to r .  The output voltage of t h e  ampl i f ie r  A i s  
fed t o  t h e  telemetry systgm of t h e  c a r r i e r .  Reference voltages a r e  pe r iod ica l ly  
supplied t o  t h e  ampl i f ie r  illput f o r  ca l ib ra t ion .  The instrument s ca l e  i s  usual
l y  divided i n t o  several subranges (Bib1.22). 

Radioactive i o n i z a t i o n  gages of t h e  alphatron type (Bibl.5, 41,42), which 
are a var ian t  of t h e  cold-cathode ion iza t ion  gage, are used i n  t h e  USA t o  
measure t h e  pressure  of t h e  upper atmosphere on rockets. In  alphatrons 
(Fig.7.111), i on iza t ion  of t h e  gas i s  accomplished by w-particles, emitted by 
radium and by i t s  decay products a t  a constant rate. 

To obta in  a l i n e a r  dependence of t h e  i o n  cur ren t  on t h e  gas pressure,  i t  i s  
necessary t o  have t h e  s i z e  of t h e  cav i ty  of t h e  gage appreciably smaller than 
t h e  length  of t h e  mean free pa th  of t h e  p a r t i c l e s  (before recombination a t  a 
given gas pressure).  Therefore, t h e  upper l i m i t  of p ressure  measurable by t h e  
alphatron i s  determined by t h e  s i z e  of i t s  cavi ty .  This l i m i t  i s  usually 
seve ra l  millimeters of mercury. The lower limit of t h e  alphatron i s  determined 
by t h e  background cur ren t  of secondary e lec t rons  knocked out from t h e  g r id  by 
t h e  a -par t ic les .  For this reason t h e  g r i d  i s  made i n  t h e  form of t h i n  wires 
(Fig.7.111). Between t h e  g r i d  (1)and t h e  c o l l e c t o r  ( 2 ) ,  a p o t e n t i a l  of 
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30 - 40 v i s  applied; t h e  i o n  cur ren t  flowin i n  this c i r c u i t  i s  t h e  measured 
quantity.  A t  a pressure  of t h e  order of 10-E mm Hg t h e  magnitude of t h e  i o n  
cur ren t  of this manometer (of t h e  order of amp) becomes comparable with 
t h e  background cur ren t  (Bibl.11). 

A t  a s u f f i c i e n t l y  low air pressure  (p < 10 mm Hg), when i o n  recombination 
can be disregarded, t h e  following expression can be t h e o r e t i c a l l y  obtained & 
f o r  t h e  i o n  current i n  t h e  alphatron chamber: 

(26.111) 

where e i s  t h e  e l ec t ron  charge; qo i s  _tlh" s p e c i f i c  i on iza t ion  f o r  a given gas a t  
p = 760 m Hg ( f o r  a i r  qo = 4 X lo5 cm ); ll i s  a constant depending upon t h e  
design of t h e  alphatron; L i s  t h e  average l i n e a r  dimension of t h e  cavi ty  of t h e  
manometer; A i s  t h e  a c t i v i t y  of t h e  a - rad ia t ion  source. 

Fig.8.111 Cal ibra t ion  Curve of Alphatron. 

The dependence of t h e  readings of t h e  alphatron on t h e  gas p rope r t i e s  and 
design da ta  of t h e  manometer follows from eq.(26.111). The c a l i b r a t i o n  curve 
of t h e  alphatron (as shown by Fig.8.111) i s  nonlinear. The operating p r i n c i p l e  
of manometers w i t h  a &source (be ta t rons)  i s  analogous. An important advantage 
of i on iza t ion  gages w i t h  a cold cathode i s  t h e i r  g rea t  r e l i a b i l i t y  and t h e  im
p o s s i b i l i t y  of chemical reac t ions  between t h e  gas and t h e  incandescent cathode; 
i n  ce r t a in  cases, however, it i s  necessary t o  take  i n t o  account t h a t  absorption 
of gases (evacuation), which has been noted f o r  i on iza t ion  gages (Bib1.22, 11), 
occurs here a l so .  

Magnetic e l e c t r i c  discharge gages (Penning gages) operate on t h e  p r i n c i p l e  
of dependence of t h e  current of t h e  e l e c t r i c  discharge i n  t h e  as i on t h e  gas 
pressure  p. The anode of t h e  gage i s  designed as a r i n g  (1) cgFig.9111) at
tached t o  a rod e lec t rode  w h i l e  t h e  cathode i s  i n  t h e  form of p l a t e s  (2). The 
guard r i n g  (3) which prevents pene t r a t ion  of p o s i t i v e  i o n s  of t h e  ambient medium 
i n t o  t h e  cavi ty  of t h e  gage, i s  connected with t h e  anode. 

Gages of this design were s p e c i f i c a l l y  used i n  measurements by t h e  t h i r d  
satel l i te  (Bibl.15). In  o the r  designs, t h e  anode i s  placed i n  a m e t a l  box which 
serves as t h e  cathode. 
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To increase  t h e  discharge current and t o  maintain a continuous discharge at  
low pressures,  t h e  cav i ty  of t h e  manometer i s  placed i n  a s t rong  magnetic 
f i e l d  d i rec ted  along t h e  axis of t h e  ring-shaped anode (Fig.9.111). I n  this 
case, t h e  e lec t rons  ion iz ing  t h e  gas under t h e  e f f e c t  of t h e  acce lera t ing  elec
t r i c  f i e l d ,  move along cu rv i l i nea r  t r a j e c t o r i e s  similar t o  s p i r a l s  wound on t h e  
magnetic l i n e s  of force .  T h i s  subs t an t i a l ly  increases  t h e  p robab i l i t y  of gas 
iorLzation by each e lec t ron .  

Fig.9 .I11 Diagram of t h e  Magnetic E l e c t r i c  
Discharge Gage. 

The discharge chamber and a permanent N - S magnet are combined i n t o  a 
s ing le  un i t  by a casing, not shown i n  t h e  sketch of Fig.9.111. Between t h e  
cathode and t h e  anode of t h e  gage, a high vol tage  U (several k i lovo l t s )  i s  
applied. A b a l l a s t  r e s i s t o r  Rb i s  connected i n t o  this c i r c u i t  and limits t h e  
discharge current i, i n  order t o  eliminate t h e  p o s s i b i l i t y  of a n  a r c  discharge 
at a s u f f i c i e n t l y  high pressure  p. The vol tage  drop across  t h e  r e s i s t o r  Rb i s  
s u f f i c i e n t l y  high. It i s  usually fed  d i r e c t l y  t o  t h e  telemetry system across  a 
matching cathode follower. The dependence of t h e  discharge cur ren t  i on t h e  
pressure p W i l l  obviously have the  following form: 

(27.111) 

where Uo i s  t h e  minimal discharge voltage (a t  a h a 1  measured pressure) ;  R, 
i s  the  equivalent r e s i s t ance  of t h e  discharge gap depending upon t h e  pressure  of 
t h e  gas and i t s  p rope r t i e s .  

With an accuracy s u f f i c i e n t  f o r  p r a c t i c a l  ca l cu la t ions  we can write t h e  
dependence of R, on t h e  pressure  p i n  t h e  form of 

k 
-R p  -
Pn' 

(28.111) 

where k i s  a coe f f i c i en t  determining t h e  s e n s i t i v i t y  of t h e  gage; n i s  a constant 
depending on t h e  gas p rope r t i e s  [ i ts  value varies wi th in  limits from 0.9 t o  
1.15 (Bibl.17) 1. 
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The dependence of t h e  readings of t h e  e l e c t r i c  discharge gage on t h e  gas 
p rope r t i e s  has t h e  same charac te r  as t h a t  of t h e  i o n i z a t i o n  gages, except t h a t  
it va r i e s  with a change i n  gas pressure.  Therefore, discharge gages require in
d iv idua l  c a l i b r a t i o n  wi th in  wide limits f o r  d i f f e r e n t  gas compositions. I n  
strong magnetic f i e l d s ,  measured i n  kg-oersteds, t h e  c h a r a c t e r i s t i c  curve of t h e  
e l e c t r i c  discharge gage i s  c lose  t o  l i n e a r  (Bib1.22), %.e., 

i = Cp, (29.111) 

where C i s  a constant depending mainly on t h e  e lec t rode  area and on t h e  gas 
proper t ies .  

The lower l i m i t  of app l i ca t ion  i s  determined by a decrease i n  t h e  i o n  dis
charge current i t o  a value comparable with t h e  background current of e l ec t rons  
emitted from t h e  cathode under t h e  e f f e c t  of a s t rong  e l e c t r i c  f$eld. For vari
ous gages of this design, t h e  maximum measurable pressure  i s  10' t o  mm Hg
(Bib1.U). 

It follows from eq.(27.111) t h a t  an  increase  i n  pressure  t o  a value where 
Rp < Rb cons t i t u t e s  t h e  upper limit of measurement. Obviously, two methods are 
poss ib le  f o r  r a i s i n g  this l i m i t :  1)t h e  use of small values f o r  t h e  r e s i s t ance  
Rb and 2) a decrease i n  t h e  magnitude of t h e  discharge current by reducing t h e  
electrode surface. However, both these  methods cannot be rea l ized  ig f u l l  since, 
t o  eliminate t h e  a rc  discharge a t  p > mn Hg, a value of R b  10 62 i s  re
quired, and any decrease of t h e  e lec t rode  sur face  Will lead t o  a drop i n  sensi
t i v i t y  of t h e  gage and t o  cessa t ion  of i t s  operation a t  low pressures  (about
loe5 mm Hg) as a consequence of t h e  i n s t a b i l i t y  of t h e  discharge. 

A s  a r e s u l t ,  t h e  general  operating range of t h e  magnetic e l e c t r i c  discharge 
gage i s  r e s t r i c t e d  t o  limits from t o  mm Hg (Bibl.9). 

We note t h a t  t h e  lower l i m i t  of appl ica t ion  of t h e  Penning gage whose design 
provides f o r  measures t o  eliminate emission fron: t h e  cathode, could be brought 
t o  5 x m Hg under labora tory  conditions. 

Furthermcre, designs of multichaxber and mul t i sec t ion  e l e c t r i c  discharge 
manometers ( w i t h  e lec t rodes  of d i f f e r e n t  s i z e )  have been developed, which operate 
i n  t h e  range from 10-1 t o  mm Hg o r  from 1t o  lo+ m Hg (Bibl.9). 

Magnetic e l e c t r i c  discharge manometers have some advantage over t h e  ioniza
t i o n  gage owing t o  t h e  absence of a hot cathode. Drawbacks inc lude  t h e  compara
t i v e l y  l a rge  weight of t h e  permanent magnet and t h e  adsorption of i ons  on t h e  
surface of t h e  continuously sput te r ing  e lec t rodes  (pumping e f f e c t )  

The e r r o r s  of measurement of gas discharge gages are mainly due t o  in s t a 
b i l i t y  of t h e  discharge. A t  p ressures  of t o  mm Hg they reach &LO%, 
which i s  somewhat higher than  f o r  i on iza t ion  gages (Bib1.22). 

The s e n s i t i v i t y  of ordinary gas discharge gages i s  1 - 3 amp/" Hg. 

The onboard manometric equipment of t h e  t h i r d  satel l i te  (Bibl.15) i s  shown 
i n  a block diagram i n  Fig.lO.111. The i o n i z a t i o n  gages wi th  t r a p s  (IM-7L), 
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operated i n  t h e  range of lo--’t o  lo--’mm Hg, and t h e i r  amplifiers (UPT) had 
two ranges of amplified cur ren ts  each. The e l e c t r i c  discharge gage (MMFX1) 
operated i n  t h e  range from t o  lo’? mm Hg (Bibl.16). The operation of t h e  
equi ment was cont ro l led  by a programmer-timer (PVM) through a coupler system 
(KSUP which a l s o  c a l i b r a t e s  t h e  ampl i f ie rs  UPT. 

Fig.lO.111 Block Diagram of Manometric Equipment of t h e  Third S a t e l l i t e .  

US = Amplifier; RTS = Radio telemetry system; IM-7L = Ioniza t ion  gage;
MMFSl = Elec t r .  discharge gage; UPT = Amplifier; DS = D r u m  switch; I T  = Indi
ca to r  tube; KSU = Cotzpler system; PVM = Programer-timer. 

The main instrument e r r o r s  i n  measuring low pressures  or dens i t i e s  by 
equipment of this type are due t o  a change i n  composition of t h e  atmosphere with 
height. An estimate shows t h a t ,  when ca l ib ra t ing  t h e  equipment i n  t h e  ear th’s  
atmosphere, t h e  poss ib l e  e r r o r  due t o  a change i n  composition amounts t o  *20% at  
a height of 200 km and *60% a t  500 km (Bibl.16). 

Section 4.	Pressure and Density Measurements of t h e  
Upper Atmosphere by Manometers 

The method of determining t h e  s t a t i c  pressure  of an undisturbed flow pa, 
based on t h e  pressure  measured by a pressure gage p l ,  depends on t h e  regular i 
t i e s  of t h e  i n t e r a c t i o n  of t h e  measuring instrument w i t h  t h e  atmosphere and i t s  
i n s t a l l a t i o n  on t h e  c a r r i e r .  I n  t h e  domain of ordinary gas dynamics and s l i p  
flow, encompassed by meteorological rockets, ca l cu la t ions  a r e  performed w i t h  
allowance for methodological e r r o r s  introduced i n  t h e  pressure-gage readings by 
t h e  high-velocity flow, j u s t  as i s  done i n  d i r e c t  temperature measurements. I n  
t h e  domain of molecular gas dynamics, t he  ca l cu la t ions  are performed on t h e  
b a s i s  of co r re l a t ions  between t h e  number of p a r t i c l e s  s t r i k i n g  t h e  cavi ty  of t h e  
manometer and t h e  number of p a r t i c l e s  i n  t h e  undisturbed atmosphere. I f  t h e  ,&I 
composition of t h e  atmosphere i s  known, t h e  gage readings can be in t e rp re t ed  by 
ca lcu la t ing  t h e  dens i ty ;  this method i s  used i n  measurements on high-altitude 
rockets, geophysical capsules, and a r t i f i c i a l  e a r t h  satell i tes.  
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. .. ....... _. ._. . .. . . .. - . 

Let us examine t h e  methodological e r r o r s  and t h e  procedure f o r  taking them 
i n t o  account i n  pressure  measurements by meteorological rockets. 

1. E;vo&tion of_ _  _ -- gas adsorbed i n  t h e  lower atmosphere by t h e  surface of t h e  
c a r r i e r .  To Zliminate this e r ro r ,  t h e  pr<ss-ure gages are i g s t a l l e d  on t h e  nose 
of t h e  rocket where t h e  pressure  of t h e  l i b e r a t e d  gases i s  not more than  

mm Hg (Bibl.2). Soviet meteorological rockets are equipped with a boom of 
small surface ( see  Chapt.1, Sect.1) and thus  have less outgassing. 

A s  ind ica ted  before (see3Chapt.II, Sect.3), t h e  e f f e c t  of outgassing of a 
satell i te,  not exceeding 1 cm /sec a t  atmospheric pressure,  can be disregarded. 

The c a v i t i e s  of low-pressure gages are ca re fu l ly  evacuated and sealed; at  a 
given a l t i t u d e  they are sprung open by mechanical percussion devices. When 
taking measurements i n  t h e  ionosphere, p ro t ec t ive  m e t a l  sh i e lds  connected with 
t h e  body of t h e  capsule are sometimes i n s t a l l e d  a t  t h e  inlet  of t h e  e l e c t r i c  

! manometers, i n  addi t ion  t o  guard rings,  f o r  p ro tec t ion  from charged p a r t i c l e s .  

W e  note t h a t  outgassing of t h e  satel l i te  sur face  p r a c t i c a l l y  ceases after 
severa l  (up  t o  3 - 5) days of f l i g h t  i n  t h e  upper atmosphere; t h e i r  ou te r  sk in  
i s  made from mater ia l s  with a low vapor pressure.  The background of gas l ibera
t i o n  can be estimated from t h e  gage readings i n  t h e  area of t h e  molecular shadow 
of an unoriented capsule ( see  Chapt.11, Sect.1). 

2. p n a m i c  pressure.  G a s  e n t e r s  t h e  in t ake  o r i f i c e s  of t h e  manometer tubes 
from t h e  boundary l a y e r  of t h e  Carl-ier; t h e  pressure  i n  t h e  boundary l a y e r  p1 
can be g r e a t e r  or less than t h e  undisturbed pressure  pm (depending on t h e  po in t  
of i n s t a l l i n g  t h e  manometer, angle of a t t ack  cy, and Mach number). The r e l a t i o n  
between t h e  pressures  pl and p, i s  introduced i n  terms of t h e  pressure  coeffi
c i en t  a which i s  defined as t h e  r a t i o  of t h e  d i f fe rence  of t hese  pressures  t o  
t h e  dynamic pressure  

(30.111) 
where p, i s  t h e  dens i ty  of t h e  undisturbed atmosphere. The coe f f i c i en t  a can be 
found experimentally. 

Testing of rocket nose cones i n  wind tunnels showed t h a t  t h e  pressure  /61
coe f f i c i en t  depends pr imar i ly  on t h e  d is tance  of a given po in t  on t h e  rocket 
surface from t h e  rocket nose 4, (Bibl.24). The dependence of t h e  coe f f i c i en t  a 
on t h e  d is tance  along t h e  rocket, expressed i n  diameters &/d for d i f f e r e n t  Mach 
numbers and angles cy, i s  p l o t t e d  i n  Fig.11.111. The diagram shows t h a t ,  a t  a 

d is tance  of about 6 - 7 diameters f r o m t h e  rocket nose (-$ = 6 - 7), t h e  pres

sure  coe f f i c i en t  a a t  high v e l o c i t i e s  i s  c lose  t o  zero, which means t h a t  an effi
c i en t  placement of t h e  pressure  sensors may s u b s t a n t i a l l y  reduce t h e  cor rec t ion  
f o r  dynamic pressure.  

Making allowance f o r  t h e  c h a r a c t e r i s t i c s  of t h e  pressure  coeffi-cient distri
bution and t h e  f l i g h t  ve loc i ty  of t h e  meteorolocical rocke ts  of t h e  MR-1 type, 
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t h e  in t ake  o r i f i c e s  of t h e  heat gages are loca ted  on a boom at  a d is tance  of 
6.5 diameters from t h e  nose. The value of a f o r  t h e  conditions of f l i  h t  can be 
determined experimentally and can be ca lcu la ted  t h e o r e t i c a l l y  (Bib1.SOY. 

Fig.ll.111 Pressure Coefficient a as a Function of t h e  
Distance &/d, t h e  Mach Number, and t h e  

Angle of Attack CY. 

Thus, t o  eliminate t h e  e f f e c t  of dynamic pressure  on t h e  result of pressure  
measurements, we can introduce a co r re l a t ion  determined from eq. (30.111), namely, 

p W =pl --ap,vz. (31.111)12 

3. Thermal effusion. The phenomenon of thermal e f fus ion  cons i s t s  i n  
t h a t  t he  pressure a t  a given po in t  of a r a re f i ed  gas i s  d i r e c t l y  propor t iona l  

/62 
t o  t he  temperature a t  this poin t .  The thermal e f fus ion  i n  a manometer i s  de
scribed by an equation of t h e  type 

(32.111) 


where P , ~ ,Tl,and p2, T2 a re , respec t ive ly , the  pressure  and temperature a t  t h e  
po in t s  1and 2,and h i s  t h e  e f fus ion  coe f f i c i en t .  

The magnitude of t h e  e f fus ion  coe f f i c i en t ,  based on t h e  da t a  of o the r  
authors (Bibl.2), i s  determined by t h e  dimensions of t h e  tubing b and the  mean 
free pa th  of molecules i n  t h e  gas h ,  over t h e  equation 



2 

Equation (33.111) shows t h a t ,  i n  t h e  lower atmosphere where h 4 by t h e  
quantity h = 0 so t h a t  t h e  e f f e c t  of thermal effusion on t h e  pressure i s  v i r tu
a l l y  noneds ten t .  In  t h e  q p e r  atmosphere where h - b as a result of t h e  f a c t  
t h a t  t he  temperature i n  t h e  boundary l a y e r  of t h e  c a r r i e r  TI i s  not equal t o  t h e  
temperature i n  t h e  cavi ty  of t h e  manometer T2, t h e  pressure  measured by t h e  in
strument pa w i l l  d i f f e r  from t h e  pressure  i n  t h e  boundary l a y e r  p1. 

To account f o r  t h e  e r r o r  introduced i n t o  t h e  results by thermal effusion, 
we w i l l  introduce s t i l l  another cor rec t ion  i n t o  eq.(31.111). For this purpose, 
pl i s  subs t i tu ted  by t h e  expression (32.111). The computational equation then  
acquires t h e  following form: 

Pa=.(-) T l  '--ap,v;.
1 
f z  


4. I n e r t i a  of t h e  pressure  gage. Heat gages i n s t a l l e d  on t h e  MR-lmeteoro
log ica l  rockets have a comparatively high thermal i n e r t i a  i n  t h e  upper atmos
phere: a t  heights of 60 - $0 h,t h e  time constant reaches 4. - 4.5 sec. During 
this time t h e  rocket covers severa l  kilometers. I n  processing t h e  observations, 
this i s  taken i n t o  account on t h e  bas i s  of experimental determinations of t h e  
t i m e  constant of t h e  gages under labora tory  conditions. The magnitude of t h e  
cor rec t ion  for i n e r t i a  depends on t h e  l a w  of t h e  t i m e  rate of change of t h e  
temperature. A t  a l i n e a r  dependence, it obviously i s  equal t o  t h e  product of 
t h e  coe f f i c i en t  T multiplied by t h e  t i m e  de r iva t ive  of t h e  pressure. 

I n  pressure  ca lcu la t ions  based on eq.(34.111) t h e  temperature of t h e  flow 
i n  t h e  boundary l a y e r  near  t h e  in t ake  o r i f i c e  of t h e  manometer TI i s  calculated 
from eq . ( l3 . I I I ) .  The necessary values of t h e  recovery coe f f i c i en t  f o r  t h e  
s t a t i c  tube are determined with consideration of t h e  c h a r a c t e r i s t i c s  of t h e  gas 
flowing p a s t  t h e  body a t  various a l t i t u d e s .  Since t h e  quan t i t i e s  h ,  p,, and r 
depend on pa, severa l  approximations must be made i n  ca lcu la t ing  by means of /63
eq.(34..III), j u s t  as i s  done i n  ca lcu la t ions  of t h e  temperature T, ( s ee  Sect.3 
of this Chapter). The quan t i t i e s  v,, T,, and T2 are measured d i r e c t l y  during 
t h e  rocket f l i g h t .  

The mean-square e r r o r  of a s i n g l e  measurement by t h e  described method i s  
estimated as a%(Bibl.2). 

I n  t h e  more r a re f i ed  regions of t h e  upper atmosphere, t h e  i n t e r a c t i o n  of 
t h e  gage with t h e  ambient medium takes p lace  i n  accordance with t h e  l a w  of free 
molecular flow. I n  this case, t h e  mean free pa th  i n  t h e  boundary l a y e r  i s  of 
t h e  order of,  or grea te r  than, t h e  diameter of t h e  in t ake  o r i f i c e  of t h e  pressure  
gage and t h e  pressure  i n s i d e  it will not be r e l a t e d  by t h e  equation of thermal 
effusion with t h e  pressure  i n  t h e  boundary layer. The computational equation 
should then have a d i f f e r e n t  form. Let us der ive  it. 
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Let  us assume t h a t  a rocket or satell i te i s  moving with a ve loc i ty  vo rela
t i v e  t o  t h e  ear th ,  t h a t  t h e  area of t h e  i n t a k e  of t h e  manometer i s  s, and t h a t  
t h e  angle included by t h e  plane s and t h e  ve loc i ty  vo i s  equal t o  8 (Fig.12.111). 

Fig.12.111 Relative Pos i t i on  of t h e  Manometer Intake s 
and t h e  Velocity Vector vo. 

Considering t h a t  t h e  ve loc i ty  d i s t r i b u t i o n  of t h e  molecules obeys MaxwellTs l aw,  
i .e.,  t h a t  t h e  gas i s  i n  thermodynamic equilibrium, Kh.Sh.Tzyan (Bib1.27) and 
E.Zenger (Bibl.30) found t h a t  t h e  number of molecules ni, flowing through un i t  
surface s i n  u n i t  t i m e  i n t o  t h e  cavi ty  of t h e  manometer i s  equal t o  

where v i s  t h e  most probable ve loc i ty  of t h e  molecules, N i s  t h e  number of 

molecules i n  u n i t  volume of t h e  atmosphere, B = 
vo s i n  8 

- i s  a parameter, 

~w = -2 e- t 2  
d t  i s  t h e  error i n t e g r a l .  

The number of molecules butescaping from t h e  manometer under t h e  same 
conditions i s  equal t o  

(36.111) 

where N 1  and v1 are, respectively,  t h e  number and most probable ve loc i ty  of 
molecules i n  t h e  manometer cavity.  A t  a s u f f i c i e n t l y  l a r g e  accommodation coef-

/64. 
f '_cient,  t h e  quan t i t i e s  N 1  and v1 are determined by t h e  w a l l  temperature of t h e  
manometer T1 s ince  t h e  molecules escape after mul t ip le  co l l i s ions .  

A s  before, t h e  pressure  and temperature i n  t h e  undisturbed atmosphere Will 
be denoted by pa and T, and t h a t  i n  t h e  cav i ty  of t h e  manometer, by p1 and TI. 

On t h e  basis of eq.(6.111) which relates t h e  pressure  t o  t h e  temperature, 
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we obta in  t h e  following expression f o r  measuring t h e  pressure  i n  t h e  cavi ty  of 
t h e  manometer dpl during t h e  time i n t e r v a l  d7: 

On t h e  bas i s  of eqs.(35.111) and (36.111) we f i n d  t h a t  t h e  change i n  t h e  
number of p a r t i c l e s  p e r  unit volume of t h e  manometer during t h e  time d7 i s  
equal t o  

(38.111) 

where w i s  t h e  volume of t h e  manometer cavity.  

I n  t h e  steady s t a t e  	 dpl = 0, so  t h a td7 

2 
where t h e  designation K(@) = e-B t. B/il [l + @(@)I i s  introduced. 

W e  will next transform eq.(39.111) i n t o  

(40.111) 

The first f a c t o r  i n  eq.(kO.III) i s  known not t o  equal 0, and t h e  last  term 
i n  t h e  second f a c t o r  i s  obviously quite s m a l l  s ince  t h e  temperature of t h e  
manometer cavi ty  does not undergo abrupt f luc tua t ion ,  i.e., 

2~~7%dTi _ _  Y - 0. 
STiVi dr  

Taking this i n t o  account, we ob ta in  t h e  computational formula i n  t h e  form of ! 
(4.1.111) 

A t  high f l i g h t  v e l o c i t i e s  and i n  an almost head-on flow when t h e  quanti- /si 
t y  8 i s  s u f f i c i e n t l y  l a r g e  ( B  2 1.5 - 2), t h e  func t ion  @ ( B )  = 1and thus  n(8) = 
= 28 fi. Subs t i t u t ing  this expression i n t o  eq . (b l . I I I )  and subs t i t u t ing  t h e  
most probable ve loc i ty  of t h e  molecules f o r  t h e  terms of t h e  molecular tempera
ture i n  conformity With eq.(7.111), it Will be found t h a t  t h e  number of p a r t i c l e s  
p e r  u n i t  volume (dens i ty  of t h e  upper atmosphere) determinable by eq.(6.111) 
W i l l  be equal t o  
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Pi 1N =  
fTiv0 sin 0 2nmk * (42.111) 

Using eq.(6.III)  f o r  ca lcu la t ing  t h e  pressure pm from t h e  measured value of 
p l ,  w e  obtain t h e  expression 

It i s  obvious tha t ,  t o  ca lcu la te  t h e  dens i ty  P, of t h e  upper atmosphere, it 
i s  necessary t o  know not only t h e  measured value of t he  pressure p but a l s o  t h e  
temperature i n  t h e  manometer cavi ty  TI,  t h e  ve loc i ty  of t h e  rocket or sa te l l i t e  
vo, t he  or ien ta t ion  of t h e  pressure gage in t ake  with respect t o  t h e  flow 8 ,  and 
t h e  m a s s  m of t h e  p a r t i c l e s  (molecules or ions) ,  i.e., t h e  gas composition of 
t h e  atmosphere at  t h e  a l t i t u d e  of measurement. Furthermore, t o  ca lcu la te  t h e  
pressure,  t h e  temperature of t he  medium T, must be known. 

The hydrodynamic t i m e  constant of t h e  gage i s  determined by t h e  change i n  
i t s  or ien ta t ion  with respect  t o  t h e  flow. T h i s  has an influence,  f o r  example, 
when t h e  c a r r i e r  i s  not s t ab i l i zed  i n  space. 

If t h e  manometer in take  faces  the  rear of t h e  c a r r i e r  t h e  quantity B in

creases,  and t h e  function " ( B )  = e-B2 - w[1- @ ( E l ) ]  = 0 (at  B 2 2). Conse
quently, t he  number of p a r t i c l e s  enter ing t h e  gage from t h e  rear cone w i l l  be 
quite small. A t  t h e  same t h e ,  t h e  counterflow of p a r t i c l e s  dN- which had 
entered t h e  manometer when i t  was at  t h e  f r o n t  and which leave it during t h e  
time d7, w i l l  be determined as usual by t h e  w a l l  temperature of t h e  manometer 
TI,  i.e., 

dN- = 
Ni	 (Ti) vis  

- dT. 
2vi-

The corresponding pressure change i n  t h e  cavi ty  of t h e  manometer will then 
be 

It follows from eq.(45.111) tha t ,  upon any change i n  or ien ta t ion  of t h e  /66
manometer, t he  pressure i n  it wi l l  decrease i n  accordance with the  l a w  

(46 -111) 

where plP i s  t h e  pressure i n  t h e  manometer cavi ty  a t  t h e  i n s t a n t  (7 = 0) when 
t h e  p a r t i c l e s  cease t o  flow i n t o  t h e  manometer. 

The time constant of t h e  manometer i s  

S (47.111) 

_ _  -.- . . ._._ _  . .. . 



A t  s = 3 . a  cm2, w = 100 cm”, T1 = 300°K, and m = 2.66 x loe2” gm (atomic
oxygen) we ob ta in  t h e  hydrodynamic t i m e  constant of t h e  manometer as = 2 X 

x sec (Bibl.10). 

Thus, t h e  pressure  i n  t h e  manometer cavi ty  fac ing  t h e  rear of t h e  c a r r i e r  
w i l l  drop off r ap id ly  t o  values t h a t  can no longer be measured. 

I n  measuring t h e  pressure  of t h e  upper atmosphere and space by pressure  
gages i n s t a l l e d  on rap id ly  moving c a r r i e r s ,  i n  p a r t i c u l a r  on satell i tes (vo = 
= 8 km/sec), t he re  are a number of add i t iona l  sources of methodological e r ro r s .  
We w i l l  i nd ica t e  t h e  most important of these.  

Ionizations by c o l l i s i o n  and d i s soc ia t ion  of t h e  gas i n  t h e  chamber of t h e  
manometer are poss ib l e  s ince  t h e  k i n e t i c  energy of t h e  oncoming p a r t i c l e s  at a 
ve loc i ty  of t h e  order of 8 km/sec i s  10 ev f o r  a gas l i k e  nitrogen Na. Calcula
t ions  (Bibl.10) have shown, however t h a t  t hese  e f f e c t s  result only i n  negl ig ib le  
e r r o r s  of measurement (less than 1%). A g rea t e r  in f luence  i s  exerted by t h e  
phenomenon of mass se l ec t ion  i n  a free molecular flow, which manifests i tself  i n  
t h a t  an in t ake  fac ing  aga ins t  t h e  flow w i l l  p r imar i ly  t r a p  heavy gas p a r t i c l e s  
w h i l e  an in t ake  fac ing  toward t h e  rear w i l l  t r a p  l i g h t  p a r t i c l e s .  The method of 
allowing f o r  this e f f e c t  as w e l l  as f o r  t h e  v a r i a t i o n  i n  gas concentration, 
produced by c o l l i s i o n s  and i n t e r a c t i o n  with t h e  w a l l  of t h e  cavity,  w i l l  be dis
cussed l a t e r  i n  t h e  text, i n  connection w i t h  mass-spectrometer measurements ( see  
Chapt .IV). 

Subs tan t ia l  e r r o r s  may arise i n  pressure  measurements owing t o  inaccura te  
knowledge of t h e  a l t i t u d e - and time-variant parameters required i n  t h e  calcula
t ion ,  and owing t o  e r r o r s  of telemetry i n  t ransmi t t ing  d a t a  t o  t h e  ground as 
w e l l  as t o  outgassing of t h e  c a r r i e r  surface. To e l imina te  t h e  la t ter ,  t h e  in
takes  can be extended forward. Calculations (Bibl.10) have shown t h a t ,  for a 
s a t e l l i t e ,  a 10-cm forward p ro jec t ion  of t h e  in t ake  almost completely eliminates 
the  e f f e c t  of t h e  adsorbed gases l i b e r a t e d  from t h e  surface.  

In pressure measurements by capsules of geophysical rockets, t h e  mean-
square e r r o r  i s  estimated as *lo% and increases  with height, e spec ia l ly  i f  p <

/67 
< mm Hg. 

The t o t a l  e r r o r  of t h e  pressure  or dens i ty  measurements on a satell i te,  
w i t h  consideration of t he  e r r o r s  i n  determining a l t i t u d e ,  velocity,  ca l ib ra t ion  
of t h e  equipment, telemetry, and bas ic  assumptions of t h e  ana lys i s ,  may go as 
high as 200% at  a l t i t u d e s  up t o  200 km (Bibl.16). 

W e  note t h a t ,  i f  t h e  gage i s  not a cavi ty  wi th  an o r i f i c e  but  a c y l i n d r i c a l  
tube covered on one end, it w i l l  be necessary t o  allow f o r  t h e  dynamic r e s i s t ance  
of t h e  tube when determining t h e  pressure  p, from t h e  measured pressure  p1. 
T h i s  res i s tance  w i l l  d i f f e r  f o r  t h e  incoming flow and f o r  t h e  outgoing flow. 
The p a r t i c l e s  of t h e  incoming flow w i l l  s t r i k e  t h e  i n s i d e  of t h e  tube as a narrow 
beam, almost without co l l i d ing  with t h e  w a l l ;  i n  o the r  words, they w i l l  have a 
narrowly d i rec ted  ve loc i ty  i n d i c a t r i x  i n  t h e  coordinate system f ixed  with respect 
t o  t h e  instrument. I n  t h e  outgoing flow at  t o t a l  accommodation of t h e  p a r t i c l e s  
t o  t h e  wall temperature, a l l  d i r e c t i o n s  of p a r t i c l e  motion are equally probable 
and t h e  ve loc i ty  i n d i c a t r i x  w i l l  have a spher ica l  shape. It follows from t h e  
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charac te r  of these  i n d i c a t r i c e s  t h a t  t h e  impingement of p a r t i c l e s  i n s i d e  t h e  
tube i s  f a c i l i t a t e d ,  r e s u l t i n g  i n  a p o s i t i v e  pressure  (PI > pm) there .  

A.I.Ivanovskiy and a number of o the r  authors (Bibl. l2),  i n  i nves t iga t ing  
this e f f e c t ,  a r r ived  at t h e  conclusion t h a t ,  i f  t h e  relative flow i s  d i r ec t ed  

along t h e  tube axis, t h e  formula pa = p1 dxwhich follows from 
T1 

eq.(41.111), must be replaced by t h e  more genera l  formula 

(48.111) 
where K P ,  -$A i s  t h e  value, averaged f o r  t h e  tube  cross sec t ion ,  of Klausingts 
f a c t o r  hich c a r a c t e r i z e s  t h e  p robab i l i t y  t h a t  p a r t i c l e s  of t h e  r e l a t i v e  flow 
are wi th in  a tube of rad ius  r at  a d is tance  4 from t h e  i n l e t ;  K ( 0 ,  &/r)i s  
Klausingts f a c t o r  f o r  p a r t i c l e s  of t h e  outgoing flow. The values of Klausingts 
f a c t o r  f o r  various conditions are given elsewhere (Bibl.12) where it i s  shown 
t h a t ,  i n  t h e  p a r t i c u l a r  case where t h e  manometer i s  a cavi ty  wi th  an o r i f i c e  

("r = 0) the  f a c t o r  K ( B ,  0)  = 1f o r  a l l  B .  I n  this case, eq.(41.111) i s  va l id .  

I n  conclusion, w e  should mention an i n t e r e s t i n g  method of thermometry by 
using two manometers (or mass spectrometers) proposed by A.R.Repnev (Bib1.25). /68
The method i s  based on t h e  use of t h e  phenomenon of thermal d i f fus ion .  On sub
s t i t u t i n g ,  i n  eq.(32.III), t h e  pressure  p by t h e  concentration of p a r t i c l e s  N 
according t o  eq.(6.111) f o r  two volumes f i l l e d  with gas of d i f f e r e n t  tempera
t u r e  T and TI, we obta in  

Equation (49.111) i s  f u l l y  va l id  i n  t h e  case of a free molecular f low i f  
t h e  normal t o  t h e  p lane  of t h e  manometer i n t ake  i s  perpendicular t o  t h e  ve loc i ty  
vec tor  of t h e  s a t e l l i t e  vo. Actually, t h e  inflow of gas i n t o  the  cavi ty  of this 
manometer i s  determined only by t h e  gas temperature T i n  t h e  atmosphere, w h i l e  
t h e  outflow i s  defined by t h e  w a l l  tenperature of t h e  manometer TI. If a second 
manometer i s  so i n s t a l l e d  t h a t  i t s  in t ake  i s  d i r ec t ed  aga ins t  t h e  flow, t h e  in
flow i n t o  t h e  instrument w i l l  be determined by t h e  ve loc i ty  of t h e  sa te l l i t e  vo. 
I n  t h e  case of a s u f f i c i e n t l y  high ve loc i ty  vo, when t h e  parameter B 2 1.5 - 2 
(see Sect.4 of this Chapter), t h e  formula f o r  determining t h e  concentration of 
p a r t i c l e s  i n  t h e  atmosphere N1, as follows from eqs.(42.111) or (43.111) w i l l  
have t h e  form 

(50 .111) 
From eqs.(49.111) and (50.111) we ob ta in  

TI(,) Ni Ti 2ninvosin8 
1 T :  k (51.111) 
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Thus, by measuring N 1  and N: by two manometers (pressure and ef fus ion)  in
s t a l l e d  as indica ted  above, i t  becomes poss ib le  t o  determine t h e  temperature of 
t h e  atmosphere a t  g rea t  a l t i t u d e s .  For this, it i s  necessary t o  measure t h e  w a l l  
temperature of t h e  manometers TI and T:, t h e  ve loc i ty  of t h e  satellite vo and 
i t s  o r i en ta t ion  0 ,  and t o  know t h e  m a s s  o f . t h e  gas molecules m. This method has 
not y e t  been pu t  i n t o  p r a c t i c a l  use, but it evidently holds promise. 

CHAPTER IV 


MEASUFUNG THE GAS COMPOSITION OF THE ATM0SPHEB.E 

Section 1. C-osition of t h e  Ear th*s  Atmosphere 

The gas composition of t h e  atmosphere i s  characterized by a high degree of 
constancy i n  a broad l a y e r  of i n t ens ive  convective and turbulen t  mixing, extend
i n g  from t h e  surface of t h e  e a r t h  t o  heights of 100 - 110 km. The da ta  c i t e d  by 
B.A.Mirtov (Bibl.16) on t h e  percentage composition of dry a i r  i n  this l a y e r  are 
given i n  Table 1.IV. The Table shows t h a t  t h e  atmosphere 9 t o  g rea t  a l t i t u d e s  
i s  mainly composed of nitrogen and oxygen. The r e l a t i v e  concentration of t h e  /69
basic atmospheric cons t i tuents ,  ind ica ted  i n  Table l.IV, does not change on 
va r i a t ions  i n  t h e  meteorological conditions (temperature, pressure,  humidity, 
and i n t e n s i t y  of s o l a r  r ad ia t ion ) .  The var iab le  components, ozone and water 
vapor, undergo noticeable f luc tua t ions  on any change i n  meteorological condi
t i ons .  

TABLE 1 . I V  

COMPOSITION OF THE ATMOSPHERF: UP TO 100 - 110 lan 

N2 7S.054 & 0.004 1-1.e (5.239 0.05) 10-4 

0 2  23 .9161  0.002 Kr ( 1 . 1 4 ~ 0 . 0 1 )  10-4 

A r  0.934 0.001 Xe ( 8 , 7 2 0 . 1  

CO, 0.030*0.003 H2 5.10- b 10- 6 


NO ( 1  . a i  & o.001) 10-3 


A c h a r a c t e r i s t i c  f e a t u r e  of atmospheric ozone i s  t h e  appreciable increase  
i n  i t s  concentration a t  heights from 15 t o  50 km, with a m a x i ”  reached near 
20 - 25 km. The formation of this l a y e r  i s  explained by t h e  photochemical 
theory (Bibl.17). The concentration of ozone here reaches 2.7 x Id”molecules 
p e r  cubic centimeter or by volume (Bibl.16). 

Water vapor i s  concentrated mainly i n  t h e  lower atmosphere. I t s  content 
by volume f l u c t u a t e s  wi th in  wide limits: from values c lose  t o  zero at  very low 
temperatures over land t o  4%at  high temperatures over t h e  sea (B ib1 .a ) .  A t  
heights of 10 - 15  km, t h e  concentration of water p a r t i c l e s  usua l ly  does not 
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exceed 7 x Id”t o  1.5 X lo’’ cm-” (B ib l .31 ) .  From d a t a  reported by seve ra l  
fore ign  researchers,  as 1.A.Khvostikov ind ica t e s  (Bibl.33), it follows t h a t  
t h e r e  usually i s  an  increase  i n  water vapor content of t h e  upper l e v e l s  of t h e  
s t ra tosphere  with height ( t h e  measured s p e c i f i c  humidity a t  an a l t i t u d e  of 
about 27 km reaches a value or! t h e  order of lo-’ gm/gm, whereas t h e  t o t a l  water 
content of t h e  atmosphere above 28 km i s  about 20 IJ. of p rec ip i t a t ed  water).  
Rocket measurements ca r r i ed  out  with mass spectrometers i n  t h e  USA i n d i c a t e  t h e  
presence of water molecules i n  not iceable  quan t i t i e s  up t o  heights of t h e  order 
of 100 km; however, t hese  d a t a  are not r e l i a b l e  and may be due t o  methodological 
e r r o r s  of measurement. 

A t  heights above 100 - 110 km, molecular oqygen O2 under t h e  e f f e c t  of 
r ad ian t  energy of wavelength h < 1750 1 in tense ly  d i s soc ia t e s  i n t o  atomic 
o q g e n  which, combining w i t h  nitrogen, forms new atmospheric components, namely, 
molecules of NO, N 2 0 ,  e t c .  Furthermore, a t  these  a l t i t u d e s  g r a v i t a t i o n a l  sepa
r a t i o n  of t h e  gases begins. T h i s  i s  manifested by a not iceable  decrease i n  t h e  
p a r t i a l  ressure of argon with respec t  t o  t h e  pressure  of neu t r a l  n i t rogen  
(Bibl.167. No increase  i n  t h e  concentration of l i g h t  gases - helium and hydro
gen - has been detected by t h e  most modern equipment, LIP t o  appreciable a l t i 
tudes. Thus, from m a s s  spectrometer measurements of t h e  composition of t h e  
atmosphere, performed by V.G.Istomin (Bibl.8) and A.A.Pokhunkov (Bib1.23, a), 
we know t h a t  helium ions,  wi th in  t h e  limits of instrument s e n s i t i v i t y  of (1.7 f 
f 0.8) lo” em-”, are found only above a height of 370 km and t h a t  t h e i r  concen
t r a t i o n  increases  with a l t i t u d e  according t o  a quasi-l inear l a w  [up t o  ( 7  
k 2) lo” a t  an a l t i t u d e  of 430 km]; above 500 - 600 km, they apparently are 
t h e  dominating component of t h e  ionosphere. Neutral helium molecules cou12 not 

-3be detected up t o  a height of 370 km by equipment with a s e n s i t i v i t y  of 10 cm 
(Bib1.23). Molecular hydrogen above 130 km has not been noted3by ex i s t ing  
equipment with a threshold s e n s i t i v i t y  of 3 X lo7 particles/cm (Bib1.25). 

TABLE 2.IV 

CONCENTRATION OF PARTICLES AND AVERAGE MOLECULAR 
WEIGHT OF THE ATNOSPEW3 

100 (2 :- 100) 103 28 
200 (3  + 50) 104  24 
300 3-109 ( 1  -:-20) 105 24 
400 (5  i- 15) 105 -20 
500 ( I  :-10) 105 -20 
700 (2  :-5)‘105 - 16 

IO00 105 
3000 (5-:-7) 103 

The r e l a t i v e  concentration of hydrogen increases  a t  g rea t  d i s tances  from 
t h e  ear th ,  with t h e  in t e rp l ane ta ry  gas ( a t  a d is tance  of more than 3 - 4 earth 
r a d i i )  consisting p r a c t i c a l l y  only of hydrogen i o n s  (Bibl.1). Present-day da ta  
on t h e  concentration of neu t r a l  p a r t i c l e s  No, concentration of i ons  (or 
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e lec t rons )  nine, and on t h e  molecular weight Mo of t h e  atmosphere a t  high a l t i 
tudes are given i n  Table 2.IV, based on t h e  da ta  of t h e  author (Bibl.1). 

Table 2.237 shows t h a t  t h e  relative number of i o n s  n i p o  i s  @te small i n  
t h e  upper atmosphere. A t  300 km, this rat50 amounts t o  not more than 0.1% and 
a t  about 700 km does not exceed 10%. Only above 1000 km does t h e  atmosphere
become noticeably ionized. A t  heights of about 3000 km, t h e  r a t i o  ni/No reaches 
almost lo", i.e., t h e  atmosphere becomes almost completely ionized. 

I n  t h e  lower ionosphe+re ( a t  60 - 100 km), t h e  predominant i ons  are NO+ and 
0;. A t  high a l t i t u d e s ,  O1 i ons  appear. The la t te r  begin t o  predominate i n  t h e  
i o n  composition at  a l t i t u d e s  above 200 km with a r a t h e r  sharp peak of t h e  con
cent ra t ion  of 0: i ons  (about 6 x lo5 eme3 being observed a t  a level of about 
250 km (B ib1 .a ) .  A noticeable increase  i n  t h e  relative concentration of @ 
i ons  begins a t  250 - 300 km, and a t  800 - 900 km it already reaches 7 - 9% of 
t h e  concentration of 0; ions.  

A t  heights above 100 km, H20,  OH, NO, C 0 2 ,  and NzO have been recorded as 
s m a l l  admixtures of t h e  atmosphere.. A t  100 - 120 km, t h e  m a x i "  content of 
H 2 0  does not exceed 0.6%, OH i s  6 x NO i s  0.1% and t h e  mixture of C 0 2  + 
+ N20, having a mass number of 44, i s  about 1%(Bib1.25). A t  heights or' 103 
- 126 km, magnesium oxide Mg""0 i s  found which i s  apparently formed by t h e  burn
ing  up of meteorites. The ions  Mgf, Ca", and Fe+ of meteor o r i g i n  w e r e  found 
at these  heights a l s o  by V.G.Istomin (Bibl .6) .  

The physical reason for t h e  formation of complex compounds of t h e  type O s ,  
NO, OH, N20, e t c .  i n  t h e  atmosphere i s  t h e  occurrence of chemical reac t ions  
upon c o l l i s i o n  of d i ssoc ia ted  and ionized molecules of oxygen, nitrogen, and 
hydrogen. The course of these reac t ions  evidently depends l a r g e l y  on t h e  in
fluence exerted by electromagnetic and corpuscular s o l a r  r ad ia t ions  and micro
meteorites on t h e  atmosphere. The gas composition of t h e  atmosphere, i n  turn,  
has  a d e f i n i t e  e f f e c t  on almost a l l  processes occurring i n  it. 

Section 2. 	 E q u i s e n t  f o r  MeasurilZg_the-Composition 
of t h e  Atmosphere 

Rocket s tud ie s  of t h e  composition of t h e  upper atmosphere were i n i t i a t e d  i n  
t h e  USA i n  194.7 (Bibl.16). Samples were col lec ted  i n  evacuated steel  cylinders 
whose in t akes  were provided with opening and closing devices which came i n  
numerous var ian ts .  The most e f f e c t i v e  opening device was a p i s t o n  knocked out 
by means of a powder charge (Bibl.16). Closing i n  most cases was accomplished 
by f l a t t e n i n g  t h e  i n t ake  wi th  another powder charge. 

The sampling cylinders w e r e  mounted i n  t h e  nose of t h e  rocke ts  so t h a t  t h e  
ends of t h e  in t ake  nozzles pro jec ted  i n t o  a chamber which communicated t h r o u g h m
lateral  holes with t h e  ambient atmosphere. 

For analyzing t h e  samples, physicochemicalmethods are pr imar i ly  used. In 
t h e  widely used Glkkauf f  and Paneth device (Bibl. l6),  &O and GO2 are frozen 
out of t h e  samples at  t h e  temperature of l i q u i d  nitrogen. The quantity of 
oxygen i n  t h e  sample i s  then determined by absorption on a c lean  hot copper 
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surface.  For determining t h e  oxygen by this method with an  e r r o r  of *O.3%, a 
sample of 0.3 - 0.5 cm i s  needed (under noma1 conditions).  The mixture of 
n i t rogen  and i n e r t  gases i s  separated from helium by cold t r a p s  f i l l e d  with 
ac t iva ted  charcoal. The helium is  not adsorbed by t h e  charcoal and i s  pumped 
out of t h e  t r aps .  Bar ium heated t o  7OO0C i s  used f o r  absorbing t h e  nitrogen. 
The remaining mixture of argon, hydrogen, and o the r  gases i s  a l s o  separated by 
means of absorbents. 

The major shortcoming of t h e  physicochemicalmethod i s  t h e  need f o r  su f f i 
c i e n t l y  l a rge  gas samples. A s  a result, t h e  p r a c t i c a l  app l i ca t ion  of t h e  method 
i s  U t e d  t o  heights of 70 - 90 km. The attempt by McQueen t o  use a ground-
based magnetic mass spectrometer f o r  ana lys i s  of t h e  air samples d id  not produce 
favorable results (Bibl.16). 

Rocket i nves t iga t ions  of t h e  chemical composition of t h e  atmosphere i n  t h e  
Soviet Union began i n  194.9 (Bibl.16). A more +roved procedure of sampling by 
g l a s s  cylinders w i t h  a capacity of 400 and 3000 cc, i n s t a l l e d  i n  t h e  openwork 
compartment of a recoverable strap-on capsule, which separa tes  from t h e  rocket, 
i s  used (Chapt.1, Sect.1). The use of g l a s s  cy l inders  permits a b e t t e r  preserva
t i o n  of t h e  a i r  sample composition. However, even i n  this case unstable com
ponents such as 0, N ,  OH, NO, e t c .  as well as various ions  co l l i d ing  w i t h  one 
another and with t h e  w a l l s  of t h e  cylinder pass  i n t o  t h e i r  ground states, form
ing  s t a b l e  molecules 02, N2, H20.  T h i s  increases  t h e  e r r o r  of measurement. 

Cylinders w i t h  a capacity of t h ree  l i t e r s  d e l i v e r  a volume of gas less than 
1mm” f o r  ana lys i s  from a height of about 100 lan (under normal conditions).  An 
increase  i n  t h e  sampling height by as l i t t l e  as 10 - 12 km l eads  t o  a decrease 
i n  t h e  gas volume by about one order of magnitude. A s  a consequence, t h e  appli
c a b i l i t y  of this sampling method i s  l imi ted  and depends on t h e  s e n s i t i v i t y  of 
t h e  equipment used f o r  t h e  ana lys i s .  

The s p e c t r a l  method developed by S.E.Frisch e t  a l .  (Bibl.3) i s  used i n  t h e  
USSR f o r  gas ana lys i s .  T h i s  method permits determining t h e  main components 
(oxygen, nitrogen, argon)’of small quan t i t i e s  of gas (10-1t o  lo’-”em-” under 
normal conditions) with an e r r o r  of l e s s  than 5 - 8%. Thanks t o  this, t h e  
c e i l i n g  of i nves t iga t ions  i s  r a i sed  t o  an a l t i t u d e  of about 110 lan (Bibl.16). 

The Fr i sch  method i s  based on t h e  use of a high-frequency gas discharge 
excited by e lec t rodes  i n s t a l l e d  outside t h e  discharge tube ( c a p i l l a r y  analyzerP
which thus does not r eac t  with t h e  gases of t h e  sample. The p r i n c i p l e  of this 
technique i s  t o  photograph t h e  f luorescent  spectrum of t h e  inves t iga ted  mixture 
and t h e  spec t ra  qf  three standard mixtures of gases of known concentration i n  
t h e  7000 - 8000 A range. T h i s  i s  followed by a photometric ana lys i s  t o  deter
mine t h e  quantity of t h e  bas ic  components. A spectrometer wtth a g l a s s  o p t i c a l  
system, f o r  example t h e  ISP-51, i s  used i n  t h e  ana lys i s  (Bibl.16). 

Losses of unstable atmospheric components and t h e  marked decrease i n  t h e  
f e a s i b i l i t y  of t h e  sampling method above 100 km necess i ta ted  a search f o r  
s u i t a b l e  mass-spectrometer equipment f o r  analyzing t h e  gas composition of t h e  
upper atmosphere. The bas i c  feature of this equipment, which ensures i t s  wide 
use on rockets and satellites, i s  the  f a c t  t h a t  t h e  ana lys i s  can be made d i r ec t 
l y  at  t h e  s i te  of sample col lec t ing ,  a t  a high s e n s i t i v i t y  and resolution. 



Magnetic mass spectrometers with s t a t i c  f i e l d s  have good s e n s i t i v i t y  and 
high reso lu t ion  (up t o  6 x lo"); however, they are heavy and la rge ,  require com
p l e x  adjustment of t h e  m a s s  analyzers and, furthermore, need considerable time 
f o r  recording t h e  spectrum [more than 5 - 10 min (Bibl.2)l .  A t t e m p t s  t o  use 
them on rockets i n  the  USA were  unsuccessful (Bibl.13). 

I n  t h e  last  1 5  - 20 years  both magnetic and nonmagnetic dynamic instruments 
have been developed f o r  i nves t iga t ing  t h e  upper atmosphere. The former include 
instruments of t h e  omegatron type, and t h e  l a t t e r  comprise radiofrequency and 
time-of-flight mass spectrometers. 

The p r inc ip l e  of t h e  omegatron i s  based on using t h e  c h a r a c t e r i s t i c s  of i o n  
motion i n  a direct-current magnetic f i e l d  and, perpendicular t o  it, an  alter
nating-current e l e c t r i c  f i e l d .  A t  resonance, when t h e  frequency of t h e  e l e c t r i 
c a l  f i e l d  i s  equal t o  t h e  Iarmor precession of i ons  of determined mass 

(w = L),t h e  t r a j e c t o r y  of t h e i r  motion i n  t h e  instnrment chamber approaches
a C  

an Archimedes s p i r a l .  The i o n  rece iver  i s  located a t  a c e r t a i n  f ixed  d is tance  
from t h e  center of t h e  s p i r a l  i n  such a manner t h a t  only resonance ions  a r e  ab le  
t o  reach it. I n  t h e  omegatron chamber, t h e  ions  are acce lera ted  regard less  of 
t h e  i n i t i a l  phase, thus avoiding acce lera t ion  a t  harmonics producing f a l s e  
peaks of t h e  i on  cur ren t .  Therefore, t h e  peaks on t h e  recording of t h e  i o n  cur
ren t  a r e  single-valuedly determined by t h e  frequency of t h e  e l e c t r i c  f i e l d .  The 
most suitable rece iver  for recording ion  current peaks i n  t h e  omegatron i s  an  
open-type secondary e lec t ron  m u l t i p l i e r  (Bib1.32). 

Simplicity and r e l i a b i l i t y ,  as w e l l  as high s e n s i t i v i t y  are f ea tu res  of 
t he  omegatron. 

The  lower limit.of t h e  measurable p a r t i a l  p ressures  of gas f o r  i n s t r .men t s  
of this type i s  estimated as of  t h e  order of 10-l' nun Hg (Bibl.13). 

The reso lu t ion  R of t h e  mass spectrometer i s  determined by t h e  r e l a t i o n  

(1.IV) 


where M i s  t h e  m a s s  number of i ons  f o r  a given peak, w h i l e  AM i s  t h e  d i f fe rence  
of t h e  mass numbers of two adjacent peaks recorded separately.  

W e  note t h a t  t h e  quantity DM i s  usua l ly  determined at  zero recording level 
of t h e  i o n  current.  

The reso lu t ion ,  as ind ica ted  by eq.(l.IV), i s  characterized by t h e  type of 
recording of t h e  i o n  current of t h e  mass spectrometer. For example, i f  t h e  
reso lu t ion  c lose  t o  a peak with a mass number M = 20 atomic m a s s  units (a.m.u.) 
i s  R = 20, then t h e  peaks of i ons  with m a s s  nmnbers M' = 19 o r  M" = 21W i l l  
differ (beginning with t h e  zero l e v e l )  since, i n  our example, AM = 1. 

The reso lu t ion  R of omegatrons i s  not constant wi th  respect t o  t h e  sca l e  of 
t h e  m a s s  spectrograph; it decreases f o r  heavier ions.  Thus, for t h e  instrument 
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described elsewhere (B ib l . l l ) ,  t h e  r e so lu t ion  for hydrogen atoms d = 1i s  R' = 
= 44-3; f o r  helium atoms of M" = 4, R" = ill; and for carbon d io f ide  or nitrogen
peroxide of MIt' = 4.4, R"' = 10. The r e so lu t ion  of omegatrons i n  t h e  region of 
l a r g e  masses i s  s u b s t a n t i a l l y  improved upon a decrease i n  t h e  high-frequency 
voltage, but i n  this case t h e  q l i t u d e  of t h e  peaks drops and t h e  s e n s i t i v i t y  
becomes less. 

An important f e a t u r e  of omegatrons i s  t h e  small s i z e  of t h e  mass analyzer. 
For example, t h e  chamber of t h e  omegatron whose parameters were indica ted  above, 
measures 48 x 36 x 36 mm, and it simultaneously performs t h e  functions of both 
i o n  source and ion  analyzer (Bibl.11) . Numerous inves t iga t ions  (Bib l . l l ,  34, 
e tc . )  show t h a t  t h e  use of t hese  instruments f o r  measurements i n  t h e  upper 
atmosphere . is  promising. 

The p r i n c i p l e  of t h e  time-of-flight mass spectrometer i s  based on t h e  de
pendence of t h e  t r a n s i t  t i m e  during t h e  d r i f t  i n t e r v a l  of i ons  w i t h  d e f i n i t e  

: 	 energy, on t h e i r  m a s s .  A t  a l a r g e  d r i f t  length,  i .e.,  when t h e  t i m e  of f l i g h t  
of t h e  ions  i s  s u f f i c i e n t l y  long, t h e  peaks of i ons  of d i f f e r e n t  mass are re
corded separa te ly  i n  time, meaning t h a t  t h e  r e so lu t ion  i s  increased. Short 
voltage pulses  serve  t o  knock t h e  ions  out of t h e  i o n i z a t i o n  chamber. The 
secondary e l ec t ron  m u l t i p l i e r  i s  t h e  most widely used rece iver .  

Inves t iga t ions  by G.M.Martynkevich (Bibl.12) demonstrated t h a t  a shortening 
of t h e  d r i f t  space of t h e  time-of-flight m a s s  spectrometer t o  150 nim permits 
obtaining s u f f i c i e n t l y  good results under labora tory  conditions, although t h e  
reso lu t ion  of t h e  instrument i s  not high (about 10 - i n  t h e  region of 
30 a.m.u.). 

The main advantage of t h e  time-of-flight mass spectrometer i s  i t s  rapid 
response, reaching sec and less (Bibl.12, 13). Instruments of this type 
are of simple design, have an uncomplicated e l e c t r i c  c i r c u i t ,  and low weight. 
I n  connection with this, various attempts are being made t o  use this instrument 
f o r  measurements i n  t h e  upper atmosphere (Bibl.13). 

However, radiofrequency mass spectrometers of t h e  Bennett type, i n  which 
e l e c t r i c  f i e l d s  are used f o r  mass separation of t h e  ion, have proved most suit
able f o r  solving t h e  problems under consideration. These instruments are c o w  
pa ra t ive ly  l i g h t  and s m a l l  a t  s u f f i c i e n t l y  high s e n s i t i v i t y  and resolution, which 
ensures t h e i r  wide use i n  measurement techniques both i n  t h e  USSR and i n  t h e  
USA. The f i e l d  of appl ica t ion  of mass spectrometers i s  l imi ted  both downward 
and upward. 

The lower l i m i t  is  determined by t h e  mean free pa th  of t h e  p a r t i c l e s  A .  
The value of h should obviously be g rea t e r  than  t h e  pa th  of i ons  L i n  t h e  ana
lyzer .  When L i s  equal t o  10 - 15 cm, t h e  lower boundary of appl ica t ion  i s  
c lose  t o  100 Ism s ince  t h e  mean free pa th  of t h e  n e u t r a l  p a r t i c l e s  A, a t  this 
l e v e l  i s  10 cm w h i l e  of e lec t rons  he and of ions  A, it i s  50 cm each (Bibl.1, 
18) 

The upper l i m i t  of t h e  appl ica t ion  range for t h e  m a s s  spectrometer i s  de
termined by i t s  s e n s i t i v i t y ,  i.e., by t h e  value of %he minimum ion current re
cordable by t h e  instrument. According t o  d a t a  by B.A.Mirtov (Bibl. l6),  we can 
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consider t h a t  the  i o n  concentration of t he  order of lo" cm-", c rea ted  by t h e  i o n  
source, s t i l l  permits r e l i a b l e  measurements, f o r  example, with a radiofrequency 
mass spectrometer. When analyzing t h e  i o n  composition of t he  atmosphere, this 
l i m i t  i s  higher s ince  t h e  na tu ra l  i on iza t ion  of t he  upper atmosphere provides 
t h e  necessary ion  concentration (see Table 2.IV) up t o  heights exceeding 1000 km. 

Consequently, l i m i t s  of a p p l i c a b i l i t y  of an instrument subs t an t i a l ly  depend 
on t h e  design data.  Thus, t o  measure t h e  atmosphere components below the  c r i t i 
c a l  l e v e l  produced by t h e  mean free pa th  L of t h e  ions  i n  t h e  analyzer, a pump
i n g  system can be used. T h i s  system should provide a pressure  drop of t h e  
sample t o  t h e  required value, after which t h e  gas i s  allowed t o  e n t e r  t he  ana
lyzer .  The pressure  i n  the  analyzer can be ca lcu la ted  from t h e  pumping rate and 
from t h e  measured outside pressure .  The use of this system, according t o  the  
ca lcu la t ions  by o ther  authors (Bibl.lO), permits reducing t h e  lower Limit t o  
50 km and even higher. 

The radiofrequency Bennett m a s s  spectrometer was  first proposed f o r  re
search of t h e  upper atmosphere i n  1952. The first successful launch of a m 
mass spectrometer i n s t a l l e d  i n  t h e  nose cone of an Aerobee rocket was  made i n  
1953 (Bibl.16). The in take  of t he  analyzer communicated with t h e  atmosphere 
through a number of narrow s l i ts  made i n  t h e  nose s k i n  of t he  rocket. Subse
quently, t h e  accuracy of measurement i n  the  USA w a s  appreciably increased by 
separating from t h e  rocket t he  nose cone, which shrouded t h e  analyzer during 
f l i g h t  through t h e  dense layers of the  atmosphere. The analyzer w a s  uncovered 
by means of a percussion mechanism. The in t ake  of t h e  analyzer w a s  mounted 
along t h e  ~s of the  rocket and was  made t o  p r o j e c t  s l i g h t l y  beyond the  leading 
edge of t h e  nose sec t ion .  The EMS-1 radiofrequency mass spectrometer was  first 
used on geophysical rockets i n  t h e  Soviet Union by V.G.Istomin i n  1957 (Bibl.16, 
35). The equipment developed i n  the  USSR i s  based on the  usua l  p r inc ip l e s ;  how
ever, s u b s t a n t i a l  modifications w e r e  made i n  i t s  design, leading t o  improvement 
i n  i t s  c h a r a c t e r i s t i c s  and r e l i a b i l i t y .  An espec ia l ly  important improvement 
i s  f i l l i n g  t h e  analyzer w i t h  a con t ro l  mixture before opening. T h i s  permits 
per iodic  check c a l i b r a t i o n  of t he  apparatus on t h e  ground and during f l i g h t  
(before Opening t h e  analyzer). 

Later ( i n  1959) a s e r i e s  of improved m a s s  spectrometers, such as t h e  
MKh-6401, MKh-6403, and MKh-6405 designed on t h e  bas i s  of t he  HMS-lmass spectro
meter used on t h e  t h i r d  Soviet  a r t i f i c i a l  s a t e l l i t e ,  was  developed and used 
extensively i n  subsequent measurements (Bibl.19). Unlike t h e  American method, 
t h e  analyzer of t h e  m a s s  spectrometer i s  i n s t a l l e d ,  as a rule, i n  a s u f f i c i e n t l y  
wide receptac le  on t h e  s ide  of t h e  detachable capsule. The intake,  after open
ing, communicates with t h e  atmosphere. The po in t  of i n s t a l l a t i o n  i s  se lec ted  
s o  t h a t  t h e  elements of t he  capsule do not block the  " f i e l d  of View" of t h e  
analyzer. Before t h e  f l i g h t ,  t h e  capsule i s  c a r e f u l l y  cleaned and washed wi th  
alcohol. E jec t ion  of t h e  capsule from t h e  rocket occurs a t  an a l t i t u d e  of about 
90 lan, a r e l a t i v e  ve loc i ty  of t h e  order of 1 m/sec being imparted t o  it 
(Bibl.8). A t  t h e  separa t ion  a l t i t u d e ,  t h e  m e a n  free pa th  is  about 4 cm; t h e  
capsule immediately moves away t o  a d is tance  of many mean free pa ths  from t h e  
rocket, i n t o  t h e  undisturbed atmosphere which i s  free from contamination. 

W e  note t h a t  a s p e c i a l  capsule without openwork bay (Bibl.16) was used i n  
t h e  USSR i n  the  m a s s  spectrometer measurements. T h i s  bay was replaced by a 
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pressur ized  compartment housing t h e  telemetry system, t h e  backup loop osc i l lo 
graph f o r  telemetry recording, and t h e  mass spectrometer. Outside t h e  compart
ment, t h e  antennas of t h e  rad io  rece iver  were mounted. In  a l l  o the r  respects,  
t h e  design of t h e  capsule i s  analogous t o  t h a t  described above (see Chapt.1, 
Sect.2). Use of this mass spectrometer on board t h e  t h i r d  satell i te made i t  &7 
p.ossible t o  obta in  a vast amount of da t a  on t h e  composition of t h e  ionosphere 
a t  heights from 225 t o  980 km (during t h e  operating per iod  of t h e  equipment 
from May 1 5  t o  25, 1958, about 15,000 m a s s  spec t r a  of p o s i t i v e  ions  were re
corded). 

Section 3. 	 Pr inc ip l e  and Basic Charac t e r i s t i c s  of 
Radiofrecpency Mass a e c t r o m e t e r s  

The operating p r i n c i p l e  of t h e  RF mass spectrometer proposed by Bennett i n  
1948 (Bibl.19) cons i s t s  i n  the  mass separa t ion  ( se l ec t ion )  of i ons  relative t o  
t h e i r  energy increment i n  t h e  HF e l e c t r i c  f i e l d  of t r i p l e - g r i d  cascades. The 
c i r c u i t  of t h e  analyzer operating on this p r i n c i p l e  (Fig.l.IV) cons i s t s  of an 
i o n  source [cathode (1)and ion iza t ion  chamber ( 2 ) l  and a three-grid se l ec t ing  
cascade and ion  c o l l e c t o r  (7), t h e r e  being no need f o r  t h e  i o n  source when 
analyzing ionized gases. I n  f r o n t  of t h e  p l a t e  of t h e  c o l l e c t o r  (7), t h e  
g r i d  (6)  i s  i n s t a l l e d ,  fed w i t h  a stopping p o t e n t i a l  Ut. 

S e  1 e c t ing 
Ion source cascade 
I 2 3 4 5 6 7]psystemTeleneiering 


-

Fig.l.IV Wiring Diagram of t h e  Analyzer of t h e  Mass 
Spectrometer with One Triple-Grid Cascade. 

A uniformly r i s i n g  (sawtooth) negative sweep voltage Up i s  fed  t o  t h e  system 
consisting of three g r i d s  ( 3 ) ,  ( b ) ,  and (5 )  spaced by i d e n t i c a l  d i s tances  s. 
I n  addition, a s inusoida l  a l t e r n a t i n g  voltage i s  supplied t o  t h e  center  g r i d  (4)
of t h e  cascade 

U,, = rfU0 sin (of+e ) ,  (2.IV) 

whose frequency u) = 2n, i s  s u f f i c i e n t l y  high and whose amplitude i s  low 
(uo u p > *  

The p o s i t i v e  ions  formed i n  the  i o n  source or i ons  of t h e  ambient medium 
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are accelerated by t h e  negative p o t e n t i a l  Up and, passing through t h e  first 
g r i d  (3)  of t h e  s e l ec t ing  cascade, impinge under t h e  e f f e c t  of t h e  high- L18 
frequency voltage applied t o  t h e  g r i d  (4).  The HF f i e l d  imparts an add i t iona l  
acce lera t ion  t o  t h e  ions,  wi th  t h e  g r e a t e s t  energy increment shown by t h e  ions  
drawn i n t o  t h e  se l ec t ing  cascade a t  a negative voltage U H ~ ,passing through t h e  
center  g r i d  (4) at  t h e  i n s t a n t  of change i n  s ign  by t h e  HF voltage, and then 
e jec ted  from t h e  cascade. The ions  t h a t  are given t h e  g r e a t e s t  energy increment 
i n  t h e  s e l ec t ing  cascade are known as synchronous ions. The mean ve loc i ty  vo 
of t h e  synchronous ions  i n  t h e  gap between t h e  g r ids  (2) and ( 3 )  i s  a constant 
for a given instrument. A s  t h e  sweep voltage Up increases,  this ve loc i ty  vo i s  
acquired by ions  of ever g r e a t e r  mass. The stopping p o t e n t i a l  Ut supplied t o  
t h e  g r i d  (6)  i s  so se lec ted  t h a t  only synchronous ions  pass  through it t o  t h e  
co l l ec to r .  Consequently, t h e  recording of t h e  i o n  cur ren t  of t h e  c o l l e c t o r  
shows a number of peaks corresponding t o  ions  of ever g r e a t e r  mass (see 
Fig.5 .IV). 

The co r re l a t ion  between t h e  sweep voltage Up and t h e  m a s s  of s ing ly  charged 
ions  can be determined from t h e  following considerations: 

The ve loc i ty  i q a r t e d  t o  a p o s i t i v e  i o n  with a mass number M i n  t h e  accel
e ra t ing  &a1 sweep f i e l d  Up obviously i s  equal t o  

where e i s  t h e  e lec t ron  charge, % = 1.66 X gm i s  t h e  atomic m a s s  un i t .  

The magnitude of t h e  increment of i o n  energy obtained i n  t h e  high-frequency 
f i e l d  of t h e  three-grid cascade i s  

mu2A W  =A (-)
2 . 

I f  we t ake  i n t o  account t h e  smallness of this quantity determined by t h e  
condition Uo < U p ,  we can transform eq.(k.IV) i n  t h e  following manner: 

T 


VA W  = ;l(nzu) = u edz,  
2 o s 

where T = -$- i s  t h e  t r a n s i t  time of t h e  i o n  i n t o  t h e  three-grid cascade, 

S i s  the  &a1 e l e c t r i c  HF f i e l d  strength.  

Using eq.(2.IV) and subs t i t u t ing  t h e  in t eg ra t ion  limits, we ob ta in  
LE 


(6 . IV)  
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The i n i t i a l  phase angle of t h e  HF voltage a t  which t h e  ions  receive a 
m a x i "  energy increment, as i s  apparent from t h e  expression derived f o r  OW, will 
then be 

S O
- + O =  180". (7.m)

uo 

where -	sw i s  a parameter of instrument tun ing  and vo i s  t h e  i o n  velocity.
VO 

The tuning parameter i s  so se lec ted  t h a t  t h e  magnitude of t h e  phase angle 0 
i s  appro-tely equal t o  -4.6' at t h e  entrance of t h e  i o n  i n t o  t h e  cascade and 
+46' at  i t s  exft. 

From condition (7.IV) and eq.(3.IV), we f i n d  t h a t  t h e  m a s s  number of t h e  
synchronous ions  i s  determined by t h e  formula 

( 8 . I V )  

where v i s  expressed i n  megacycles, s i n  centimeters, and Up i n  vo l t s .  

Equation ( 8 . I V )  i s  the  bas ic  formula f o r  t h e  radiofrequency mass spectro
meter. From this, knowing t h e  values of V ,  s, and Up f o r  a d e f i n i t e  peak of 
t h e  i o n  current,  t h e  mass of t h e  ions  can be d i r e c t l y  determined. 

The amplitude of t h e  i o n  cur ren t  peaks w i l l  evidently be propor t iona l  t o  
t h e  i o n  concentration i f  t h e  s e n s i t i v i t y  of t h e  instrument i s  kept constant.  

I n  connection with this, t h e  s e n s i t i v i t y  of mass spectrometers i s  charac
t e r i z e d  by t h e  magnitude qf t h e  change i n  concentration corresponding t o  t h e  
va r i a t ion  i n  output s i g n a l  by one percent of t h e  telemetry sca le .  

A var i a t ion  i n  t h e  stopping p o t e n t i a l  Ut causes a change of t h e  zero l e v e l  
of t h e  s igna l  and, consequently, of t h e  bas ic  instrument parameters. Upon an 
increase  i n  t h e  p o t e n t i a l  Ut , t h e  r e so lu t ion  increases  (narrowing of t h e  i o n  
cur ren t  peaks) and t h e  s e n s i t i v i t y  decreases (decrease i n  amplitudes of t h e  
peaks with increase  i n  zero l e v e l ) .  Thus, t h e  magnitude of t h e  stopping 
p o t e n t i a l  Ut i n  mass spectrometers i s  es tab l i shed  by t h e  required s e n s i t i v i t y  

/80 
( c o l l e c t o r  cur ren t )  ; t o  increase  t h e  r e so lu t ion  seve ra l  three-grid cascades , 
separated by equipoten t ia l  d r i f t  spaces, are used i n  analyzers ins tead  o f  only 
one. 

The extent of t h e  d r i f t  space - dis tance  L betweerthe center g r ids  of t h e  
cascade - i s  so  arranged that, t h e  t r a n s i t  t i m e  of synchronous ions  along these  
i n t e r v a l s  i s  equal t o  t h e  t o t a l  number of per iods  T of t h e  HF f i e l d ,  

L=vobT,  (9.IV) 

where vo i s  t h e  ve loc i ty  of t h e  synchronous ions  i n  t h e  analyzer, b i s  a 



constant coef f ic ien t  selected i n  accordance with t h e  required resolut ion.  

If eq.(S.IV) i s  sa t i s f i ed ,  only synchronous ions  w i l l  pass  through t h e  
center  gr ids  of all cascades a t  t h e  in s t an t  of s ign  reversa l  of t h e  HF f i e l d .  
The cloud of synchronous ions  d r i f t i n g  along t h e  analyzer axis  i s  more sharply 
separated from t h e  nonsynchronous ions  and t h e  peaks of t h e  i o n  current are more 
narrow. Thus, t h e  resolut ion of t h e  instrument i s  increased (by a decrease i n  
t h e  quantity AM). 

It i s  important t o  note t h a t  an increase i n  t h e  number of se lec t ing  cas
cades of t h e  analyzer leads  t o  a decrease i n  ghost harmonic peaks which are 
secondary maxima of ion-energy increment. The presence of harmonic peaks would 
i n t e r f e r e  w i t h  t h e  in t e rp re t a t ion  of m a s s  spectra .  The l e v e l  of t h e  harmonic 
peaks, natural ly ,  changes with any change i n  magnitude of t h e  stopping p o t e n t i a l  
ut 9 but an increase i n  Ut i n  order t o  decrease t h e  amplitude of t h e  harmonics 
i s  not expedient s ince this would lead  t o  a decrease i n  sens i t i v i ty .  An analy
sis (Bibl.4) showed t h a t  t h e  l e v e l  of harmonics, permissible with respect t o  
s ens i t i v i ty ,  should not exceed 0.85 - 0.87 of t h e  fundamental peak. 

We note t h a t  t h e  resolut ion i s  approximately proport ional  t o  t h e  t o t a l  
length of t h e  d r i f t  spaces. The use of an analyzer with small d r i f t  spaces 
would require an appreciably g rea t e r  number of three-grid cascades t o  achieve 
t h e  necessary resolut ion.  

A s  a parameter character iz ing the  design of t h e  analyzer of a m a s s  spectro
meter, it i s  common t o  ind ica te  t h e  number of d r i f t  spaces and t h e  number of 
corresponding periods of HF voltage. For example, a high resolut ion can be 
achieved f o r  5 - 9 - 4 - 7 = cycl ic  instruments. T h i s  means t h a t  t h e  analyzer 
contains f i v e  cascades and tha t ,  f o r  t h e  first d r i f t  space, t h e  value of t h e  
coef f ic ien t  b i n  eq.(9.IV) W i l l  be equal t o  5, f o r  t h e  second d r i f t  space 9, 
e tc .  

To ensure constancy of t h e  synchronous i o n  ve loc i ty  vi at  a l l  d r i f t  spaces 
between t h e  extreme gr ids  of t he  cascades of t h e  multistage analyzers, a posi
t i v e  bias voltage ub i s  applied. T h i s  voltage compensates the  energy increment 
imparted t o  t h e  synchronous ions  i n  t h e  se lec t ing  cascades. A t  t h e  same /81
t i m e ,  it correspondingly reduces t h e  veloci ty  of t h e  nonsynchronous ions,  with
out lessening t h e  resolut lon of t h e  instrument. 

The optimum value of t h e  b i a s  voltage Ub f o r  each multistage analyzer i s  
selected when tuning t h e  instrument f o r  maxi” sens i t i v i ty .  If t h e  value of 
U b  deviates  from optkum i n  any direct ion,  t h e  phase angle a t  t h e  i n s t a n t  of 
arrival of t h e  synchronous ions  a t  t h e  cascades W i l l  differ from optimum (e = 
= -46’), causing a drop i n  s e n s i t i v i t y  of t h e  instrument. 

W e  note t h a t  subranges of t h e  mass sca l e  are usual ly  provided i n  instru
ments, resu l t ing  i n  a broad common range with a comparatively simple sweep-
voltage Up o sc i l l a to r .  The change from one m a s s  range t o  another i s  accomplished 
by changing t h e  frequency v of t h e  HF’osc i l l a to r .  Simultaneously, t h e  sweep 
o s c i l l a t o r  i s  switched. 

The values of v and Up should match. For example, f o r  t h e  sobranges of 



- - 

1- 4 and 1 2  - 56 a.m.u. used i n  our  instruments and an i n t e r g r i d  d is tance  of 
s = 0.15 cm a t  a minimal sawtooth sweep voltage U p m i n  = -70 v, t h e  high-frequency 
of t h e  first subrange, as follows from eq.(7.IV), should be equal t o  about 

-@6 30 mc ( V I  = d 0.266 x 70 . = 30) and f o r  t h e  second subrange v2 
1 x 2.25 x 10’” 1 2  

= 8.6 mc. In our case, t h e  maximum value of t h e  sawtooth voltage should be 
Upmaxl = -280 v f o r  t h e  first subrange and Upmax2  = -350 v f o r  t h e  second. 
These frequencies and voltages are generated in t h e  mass spectrometer of t h e  
MKh-6403 type during a sweep t i m e  of t h e  subranges of 0.6 and 2.4. sec, re
spectively.  I n  t h e  MKh-6401 mass spectrometer, t h e  frequencies v1 and v2 were 
se lec ted  t o  be half those ind ica ted  above. 

The comparative c h a r a c t e r i s t i c s  of t h e  RF mass spectrometers used f o r  in
ves t iga t ing  t h e  composition of t h e  upper atmosphere (Bibl.19, 35) are given i n  
Table 3.m. 

Section 4.Radiofrequency Mass S e c t r o m e t e r  MKh-6401 

The small automatic MKh-6401 radiofrequency mass spectrometer (Bibl.18) i s  
designed f o r  measuring t h e  i o n  and molecular composition of t h e  upper atmos
phere. The block diagram of t h e  instrument i s  given i n  Fig.2.IV. The elec
t r o n i c  measuring u n i t  generates t h e  supply voltage f o r  t h e  analyzer, amplifies 
t h e  i o n  currents,  and reads out t o  t h e  te lemetq system a l l  parameters needed 
f o r  monitoring t h e  operation of t h e  instrument and f o r  i n t e rp re t ing  t h e  mass /82 
spec t ra .  It incorporates an i o k c u r r e n t  amplifier, high-frequency and sawtooth 
voltage o s c i l l a t o r s ,  a device f o r  switching t h e  mass ranges, and a s t a b i l i z e d  
feed-voltage converter f o r  a l l  elements of t h e  instrument. 

From 
p r o g r m c r  

Fig.2.IV Block Diagram of Mass Spectrometer. 
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TABLE 3.IV 

BASIC CHARACTERISTICS OF MASS SPECTFDMEEXS 

I Character is t ic  
I 

Nmber of cycles of 
t h e  analyzer 

Mass range, a.m.u. 

Resolution R (with 

respect  t o  t h e  base 

of t h e  peak) maximum 25 

at  M = 20 under 

laboratory conditions -

Sens i t i v i ty  p e r  1% of 

Townsend MKh-6401 MJSh-6403 MKh-6405 
Instrument 

5 - 7  5-9 - 4-7 5-9 - 4-7 5-9 - 4-7 
5 - 48 1-LJ12-56 1-4/12-56 1-2/12-36 

50 50 20 

20 20 -
t h e  telemetry sca l e  i r  
i on  analysis  

On a rocket, 
ion/cm3 

On a satell i te,  
ion/ cm” 

Sens i t i v i ty  i n  neutral  

analysis  (with respect 

t o  argon), 

p a r t i c l e  s/cm” 


Same, mm Hg 

Weight without 


5X102 1x102 
- 

- 1 . 6 ~ 1 0 ~  1 . 6 ~ 1 0 ~  
- 5 ~ 1 0 - ~  5x10” 1x10-1 

power source, kg 6 .O 303 2.0 2.0 
Power input,  w ’30 6 4 4 

The five-stage analyzer of t h e  instrument (Fig.3.m) i s  designed on a 
5 - 9 - 4 - 7-cycle c i r c u i t .  The i o n  source of t h e  analyzer i s  arranged so that 
it can be removed when measuring t h e  i o n  composition of t h e  atmosphere. An ec
onomic thorium oxide cathode, using a current of not more than 0.5 amp a t  a 
voltage of 1.5 v, i s  used here. 

All 23 g r ids  of t h e  analyzer are made of a one-layer winding of tungsten 
wire. The casing of t h e  analyzer, having a length of 270 mm without t h e  i o n  
source and 4.10 mn with it and a diameter of 50 mm, is made of stainless steel. 
Its f ron t  p a r t  i s  provided with a g l a s s  sphere wfrich, before start of opera- /83
t i o n  i n  the  atmosphere, i s  broken by a striHng mechanism attached t o  t h e  casing 
of t h e  i o n  source. 

The co l l ec to r  i s  d i r e c t l y  connected with t h e  input  of t h e  pre-amplifier 
which i s  housed i n  a removable head attached t o  t h e  base of t h e  analyzer. The 
ion iza t ion  chamber of t h e  i o n  source cons is t s  of two g r i d s  connected i n  p a r a l l e l  
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and fed  w i t h  a voltage of 40 v ( r e l a t i v e  t o  t h e  cathode), f o r  acce lera t ing  t h e  
e lec t rons .  Beyond t h e  chamber are two g r i d s  supplied by a negative voltage /sr,
of 70 - 100 v which e x t r a c t s  t h e  ions  from t h e  ion iza t ion  chamber. 

S t r i k  

r r e n t  
e r  

\ =of di os Sweep
C o n t r o l  

1 : o ~
e m i s s i o n  

tage ub v o l t a g e  uP 
c u r r e n t  ( t o  73.) 

Fig.3.IV Wiring Diagram of t h e  Analyzer of t h e  
MKh-6kOl Instrument. 

A p o s i t i v e  stopping p o t e n t i a l  Ut i s  supplied t o  t h e  th ree  parallel-connected 
gr ids ,  which provides a pronounced cut-off of i ons  by energies. The negatively 
charged g r i d  a t  t h e  i o n  co l l ec to r  prevents t h e  occurrence of a dynatron e f f ec t .  
The weight of t h e  analyzer, with preamplifier and i o n  source, i s  2 .1kg .  

O\
h o  

Fig.l+..IV Basic Diagram of t h e  Ion-Current Amplifier. 

The elements of t h e  e l ec t ron ic  unit a r e  mounted t o  two connected panels 
which can be moved i n  an  aluminum casing of 210 x 90 X 70 nun dimensions. The 
weight of t h e  u n i t  i s  1.2 kg. 
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The c i r c u i t  of t he  ion-current ampl i f ie r  (Fig.4.IV) cons i s t s  of four  DC 
ampl i f ie r  stages.  The first t h r e e  s tages  a r e  enveloped by a negative voltage 
feedback. An electrometer pentode of t h e  1-1 bar  type (LI) i s  used i n  t h e  first 
s tage  which i s  t h e  preamp. The p l a t e  voltage of t h e  tube 1-1 (about 15 v) i s  
tapped from t h e  voltage d iv ide r  which i s  connected i n t o  t h e  cathode c i r c u i t  of 
t h e  second stage, composed of t h e  tube 1Z h l 8 B  (Lz) .  The t h i r d  s tage  i s  composed 
of t h e  tube 1 Zhl7B (La) i n  a t r i o d e  i n  connection with d i s t r i b u t e d  loads.  The 
voltage of t h e  negative feedback i s  tapped from t h e  load i n  i t s  p l a t e  c i r c u i t  
across a potentiometer, which permits regulating t h e  zero l e v e l  of t h e  output 
s igna l .  

W e  note t h a t  generally electrometer ampl i f ie rs  are used f o r  measuring small 
currents t h a t  slowlT vary with time. Their i npu t  res i s tance  R+ i s  la rge ,  /85
of t h e  order of Id - 10’” ohms a t  a negl ig ib le  magnitude of t h e  shunting s t r a y  
capacitance C,  = 0.1 - 0.2 ppf .  The time constant of t h e  input  c i r c u i t  there
fo re  i s  la rge ,  7 = RIC, = 10 - 200 sec (passband from 0 t o  1 - 20 cps). In a 
mass spectrometer and i n  c e r t a i n  o ther  instruments, it might become necessary 
t o  measure high-speed events which requires a reduction i n  t h e  time constant 7 
t o  milliseconds or ,  i n  o the r  words, a broadening of t h e  frequency band t o  
hundreds of cycles. 

The s e n s i t i v i t y  of narrow-band electrometer ampl i f ie rs  i s  l imi ted  by t h e  
i n t r i n s i c  noise of t h e  tube, p r imar i ly  by i t s  f l i c k e r  noise (Bibl.21). In 
broad-band c i r c u i t s  b u i l t  of modern electrometer tubes, f o r  example of type 1-1 
tubes, t he  thermal noise  of t h e  high input  r e s i s t ance  (R, of t h e  order of 
10’” ohms) predominates and t h e  s e n s i t i v i t y  i s  close t o  t h e  t h e o r e t i c a l  thres
hold. 

Recently, t h e  c i r c u i t  of a t r a n s i s t o r i z e d  broad-band electrometer amplifier 
w i t h  t h e  use of a s ing le  1-1 tube i n  t h e  f i rs t  s tage  has been developed f o r  on-
board equipment (Bibl.30), with t h e  con t ro l  accomplished with respect t o  t h e  
f i r s t  g r id .  A t  a s u f f i c i e n t l y  l a rge  negative bias, t he  e l ec t ron  current of this 
g r id  i s  almost completely absent. The thermionic current of t h e  cathode, which 
a l s o  furn ishes  a considerable cont r ibu t ion  t o  t h e  magnitude of t h e  g r i d  current 
of t h e  electrometer tubes, i s  not l a r g e  because of t h e  low temperature of t h e  
cathode and t h e  low power d i s s i p a t i o n  (0.01 w ) .  Therefore, it was  poss ib le  t o  
increase  t h e  voltage across t h e  p l a t e  and t h e  screen g r i d  of t h e  tube and t o  
obtain from t h e  electrometer s tage  a high amplification f a c t o r  with respect t o  
voltage (up t o  100). The t i m e  constant of t h e  input c i r c u i t  of this ampl i f ie r  
i s  0.01 sec a t  an i n  u t  r e s i s t ance  of Id”ohms, w h i l e  t h e  range of measurable 
cur ren ts  i s  from lo-” t o  amp. The t o t a l  voltage ampl i f ica t ion  f a c t o r  
(without feedback) of t h e  first three s tages  of t h e  c i r c u i t  i n  Fig.4.IV i s  
equal t o  4.00. 

Within t h e  h igh-sens i t iv i ty  channel t h e r e  i s  an add i t iona l  fou r th  s tage  i n  
t h e  tube 1ZH17B (L4)  with a voltage amplification f a c t o r  of 10. 

The low-sensitivity channel output i s  taken only from a p a r t  of t h e  load 
r e s i s t ance  which i s  connected i n t o  t h e  cathode c i r c u i t  of t h e  tube  L3. Thanks 
t o  this, t h e  amplification i n  t h e  low-sensit ivity channel i s  one order of magni
tude l e s s  than i n  the  moderate-sensitivity channel. 
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To obtain a low output res i s tance  and matching with t h e  telemetry system, 
a l l  th ree  outputs of t h e  amplifier have P6G t r a n s i s t o r i z e d  emitter followers. 
The output voltages have pos i t i ve  po la r i ty .  The outputs  of t he  amplifier can 
be fed simultaneously t o  the  th ree  channels of t h e  telemetry system or alter- ,& 
nately t o  one channel across  an electromechanical commutator K1. The dynamic 
range of a l l  amplifier channels reaches lo” ( t h e  measurable currents  of t h e  
co l l ec to r  a r e  from lo-’ t o  amp i n  order  of magnitude). The t i m e  constant 
of t h e  amplif ier  does not exceed 1.5 msec because of t h e  use of a correct ion 
system. This permits an undis tor ted recording of t h e  e n t i r e  mass spectrum from 
1t o  56 a.m.u., wi thin 3 sec. 

I o n  c u r r e n i ,  amp 

L igh t -mas:  Ileavy-mass 
range  range  

Fig.5.IV Mass 	Spectrum of Control Mixture of t h e  
Analyzer F i l l i n g  G a s .  

The analyzer of t h e  mass spectrometer i s  pre-evacuated at  a high tempera
t u r e  and then f i l l e d  with a mixture of hydrogen, helium, neon, and argon at a 
pressure of about mm Hg at  a d e f i n i t e  percentage r a t i o .  T h i s  permits 
per iodic  monitoring of t h e  operation of t h e  e n t i r e  instrument, by recording a 
ca l ib ra t ion  spectrum of t h e  gas mixture of t h e  analyzer. The configuration of 
t he  mass spectrum obtained from t h e  moderate-sensit ivity channel of t h e  ampl i 
f i e r  i s  shown i n  Fig.5.IV. The diagram ind ica t e s  t h a t  t h e  reso lu t ion  of t h e  
instrument i s  readi ly  determined from t h e  peaks of t h e  neon isotopes (20 and 22). 

The HF o s c i l l a t o r  (Fig.6.IV) generates a voltage of about 6.5 v at  fre
quencies of 4.3 and 1 5  mc and a l so  a constant voltage of pos i t i ve  po la r i ty  up 
t o  80 v, which i s  supplied t o  t h e  suppressor electrode. The o s c i l l a t o r  i s  de
signed as a se l f -osc i l la t ing  c i r c u i t  with a ,pentode P22B ( tube LE) .  The c i r 
c u i t s  L1 and L2 mounted i n  t h e  p l a t e  c i r c u i t  of t h e  tube L 5  a r e  tuned t o  fre
quencies of 4.3 and 1 5  mc, respectively.  The switch-over from generation of a 
frequency of 4.3 mc t o  a frequency of 15  mc i s  accomplished by closing, with 
respect  t o  high frequency, t he  c i r c u i t  of L1 across  t h e  contact of t h e  re lay  
KQ-,l. The o s c i l l a t o r  i s  frequency-stabilized by means of t he  c rys t a l s  KB1 and 
KB2 and a l so  with respect  t o  amplitude. The amplitude s t a b i l i z a t i o n  system i s  
based on a conparison of t h e  r e c t i f i e d  HF voltage with a s t ab i l i zed  reference 
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voltage and on an amplif icat ion of t h e  difference of these  voltages f o r  regula
t ion .  The HF voltage, r e c t i f i e d  by t h e  diode LS, i s  fed  t o  the  input  of t h e  
two-stage DC amplif ier  consis t ing of t h e  tubes b and Le. The reference voltage 
from t h e  s t a b i l i t r o n  tube, f o r  which a cold thyratron TKh3B i s  used, i s  fed t o  
t h e  cathode of t h e  f i r s t  s tage of this amplifier.  The amplitude i s  regulated 
by varying t h e  voltage across  t h e  screen g r id  of t h e  tube. A s  a result of /87
these  measures, t he  c i r c u i t  of t h e  HF o s c i l l a t o r  i s  nonc r i t i ca l  t o  mismatch of 
t h e  c i r c u i t s ,  t o  f luc tua t ions  i n  temperature and humidity, and t o  other  fac tors .  
The stopping po ten t i a l  Ut i s  tapped from t h e  load res i s tance  i n  t h e  c i r c u i t  of 
t h e  r e c t i f i e r  diode. 

er 


Fig.6.IV Pr inc ipa l  Wiring Diagram of t h e  
High-Frequency Osc i l la tor .  

The mode of operation of t h e  c i r c u i t s  of  t h e  sawtooth sweep generator 
(Fig.7.IV) i s  based on charging t h e  capaci tors  by a d i r e c t  current  across t h e  
pentode L9. Thanks t o  this, t h e  time rate of change of t h e  voltage i s  l i n e a r  
(deviat ions from l i n e a r i t y  are not more than 3 - 4%). The d i f f e r e n t  charging 
rate, needed t o  ensure sweeping of t h e  ions i n  the  subranges of t h e  mass scale ,  
i s  obtained by connecting t h e  capaci tors  of d i f f e r ing  capacitance by means of 
contacts  of t h e  re lay  K a + .  For t h e  light-mass subrange t h e  charging time i s  
0.5 sec and f o r  heavy masses, 2.5 sec (capacitances of 0.25 and 1pf, respec
t ive ly ) .  The energy s tored upon charging t h e  capaci tor  which generates t h e  
negative sweep voltage i n  t h e  heavy-mass subrange i s  used t o  switch t h e  electro
mechanical commutator of t h e  amplifier outputs PI, which. is  connected i n t o  i t s  /88
discharge c i r c u i t .  A t  t h e  same t i m e ,  t h e  b i a s  voltage which has been increased 
owing t o  t h e  70-volt DC source, i s  tapped from the  p l a t e  of t h e  tube L. 

The switching c i r c u i t ,  designed on t h e  p r i n c i p l e  of a re laxa t ion  osci l 
l a t o r ,  operates for  0.5 sec with an i n t e r v a l  of 2.5 sec. T h i s  causes flopover 
of t h e  relay contacts  switching t h e  c i r c u i t s  of t h e  HF o s c i l l a t o r  and t h e  
capaci tor  of t he  sawtooth generator simultaneously. 
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The instrument i s  powered by a DC transformer assembled from semiconductor 
instruments with input  s t a b i l i z a t i o n .  The instrument switches on and off t h e  
de l ivery  of a shor t  pu lse  t o  t h e  winding of t h e  r e l a y  i n  the  transformer feed 
c i r c u i t .  The s i g n a l s  from t h e  t h r e e  outputs of t h e  amplifier and t h e  monitored 
parameters are fed  t o  t h e  telemetry system. 

h i a s-v o l t a E e  

OJZm -70vPi

L 

Sueep 
v o  1 t n g e  

Fig.7.IV Pr inc ipa l  W i r i n g  Diagram of a Sawtooth 
Sweep Voltage Generator. 

Independent checking, tuning, and ca l ib ra t ing  of t h e  MKh-6401 mass spectro
meter, j u s t  as f o r  o the r  types of instruments, are ca r r i ed  out from t h e  ground 
con t ro l  un i t  (console) by means of which t h e  fundamental regimes of t h e  mass 
spectrometer can be es tab l i shed  and measured, t h e  mass spectrum can be observed 
on t h e  screen of a cathode-ray tube or can be displayed on a loop oscil lograph. 
To c a l i b r a t e  t h e  amplifier, t h e  console i s  provided with a constant-voltage 
source, feeding t h e  input  of t h e  amplifier across  a s tep  divider.  The var iab le  
voltages are measured by a cathode voltmeter mounted on the  console. 

On t h e  bas i s  of recording t h e  spectrum of t h e  cont ro l  mixture ( see  
Fig.s.IV) a c a l i b r a t i o n  cdrve of t h e  dependence of t h e  gas m a s s  on t h e  time t h a t  
has passed s ince  the  start of scanning a given mass range i s  p lo t t ed .  The e r r o r  
of laboratory c a l i b r a t i o n  of mass spectrometers i n  t h e  USA i s  estimated as 20% 
(Bibl.38). 

s s Spectrometer MeasuremEt s 

Mass spectrometry permits determining not only t h e  chemical composition of 
t h e  inves t iga ted  gas but also,  by measuring t h e  amplitude of t h e  i o n  current 
peaks, determining t h e  d i s t r i b u t i o n  of p a r t i a l  concentrations of t h e  components 
of t he  f r e e  atmosphere with respect t o  height. For this, it i s  necessary t o  
use a measuring method i n  which t h e  e f f e c t  of a l l  f a c t o r s  d i s t o r t i n g  t h e  results 
i s  reduced t o  a minimum and taken i n t o  account. T h i s  necess i t a t e s  i nves t iga t ing  
t h e  problems of t he  i n t e r a c t i o n  of t h e  mass spectrometer analyzer w i t h  t h e  
ambient atmosphere during f l i g h t  and t o  estimate t h e  poss ib le  d i s t o r t i o n s  of t h e  
compositions and concentrations of t h e  inves t iga ted  gas. 

Outgassing of t h e  capsule i s  an important source of e r ro r .  Additional 
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methodological e r r o r s  are produced by i n s t a l l a t i o n  of instruments on rap id ly  /ss
moving capsules. The result of t h e  measurements i s  here a f f ec t ed  by t h e  d i s to r 
t i o n  of t h e  concentration near t h e  capsule, by o r i en ta t ion  of t h e  analyzer with 
respect t o  t h e  r e l a t i v e  flow, by t h e  charge of t h e  capsule, and by o the r  f ac to r s .  

I n  measuring t h e  i o n  composition of t h e  upper atmosphere, fewer methodo
l o g i c a l  d i f f i c u l t i e s  arise than i n  measuring t h e  n e u t r a l  components. Owing t o  
t h e  high rate of gas exchange after opening t h e  analyzer ( a f t e r  1- 1.5 sec) ,  
dynamic equilibrium of t h e  fluxes of incoming and outgoing p a r t i c l e s  i s  estab
l i shed .  The l a t t e r  pass  through t h e  i o n  source of t h e  analyzer, with some of 
them undergoing ion iza t ion  and again being analyzed. However, there  i s  a con
s iderable  d i f fe rence  between t h e  incoming and outgoing fluxes: t h e  p a r t i c l e s  of 
t h e  incoming f l u x  s t r i k e  t h e  ion iza t ion  region f o r  t h e  most p a r t  d i r e c t l y  from 
t h e  atmosphere, whereas t h e  p a r t i c l e s  of t h e  outgoing ( r e f l ec t ed )  flux undergo 
one or severa l  c o l l i s i o n s  with t h e  w a l l s  or components of t h e  analyzer (g r ids ,  
co l l ec to r ,  e tc . ) .  When t h e  p a r t i c l e s  c o l l i d e  with t h e  walls or with each other,  
d i f f e r e n t  reac t ions  may occur which change t h e  composition of t h e  mixture. 

Let us examine t h e  perturbing processes and a method f o r  taking them i n t o  
account. 

a )  &elusion of outgassing background. The measuring method based on t h e-

use of separable capsules g r e a t l y  reduces t h e  e f f e c t  of outgassing of t h e  rocket 
and capsule on t h e  da t a ;  however, i n  this case t h e  m a s s  spectrometer records 
ions  of contaminants detected from t h e  charac te r  of t h e  recording of t h e  i o n  
current.  A s  a r e s u l t  of tumbling of t h e  unoriented capsule or satel l i te  t h e  
i n t e n s i t y  of t h e  peaks on t h e  ion-current recording va r i e s  ( i s  modulated), wi th  
t h e  period of r o t a t i o n  of t h e  container depending on whether t h e  in t ake  i s  
located i n  t h e  compression or r a re fac t ion  zone. The i n t e n s i t y  of t h e  back
ground of outgassing (water vapor, nitrogen, oxygen, carbon dioxide, e t c . )  i s  
v i r t u a l l y  independent of t h e  capsule o r i en ta t ion  (Bibl.7, 26). 

In  ce r t a in  measurements (Bib1.23), t h e  outgassing background was taken i n t o  
account based on measurements a t  t h e  time when t h e  analyzer i n t ake  was i n  t h e  
region of t h e  molecular shadow. The pressure  of t h e  gas background i n  t h e  
cavi ty  of t h e  analyzer Pb was  determined by t h e  formuh 

(10. I V )  

where It i s  t h e  amplitude of t h e  peak of a given gas on v a r i a t i o n  i n  t h e  molecu
l a r  shadow, and k, i s  t h e  c a l i b r a t i o n  coe f f i c i en t  of t h e  mass spectrometer whose 
magnitude depends on t h e  emission current of t h e  t h e m i o n i c  cathode. 

For example, f o r  t h e  MKh-6401 instrument we have k, = 4 X lo' mm Hg/amp a t  
an emission current of 1ma (Bib1.23). 

b) Con_sidergtion-of-the e f f e c t  of the-ckarge and ve loc i ty  of t h e  capsule.- -
If t h e  capsule t o  which t h e  mass spectrometer i s  mounted has a p o t e n t i a l  cp /90 
r e l a t i v e  t o  t h e  undisturbed plasma, this i s  equivalent t o  t h e  sweep voltage Up 
changing by t h e  same magnitude 

u;, =up* cp. 
( l l . I V )  
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The motion of a c a r r i e r  wi th  a high ve loc i ty  vo exceeding t h e  mean ve loc i ty  
of t h e  gas p a r t i c l e s  results i n  t h e  p a r t i c l e s  en ter ing  t h e  analyzer as an ordered 
flow with t h e  ve loc i ty  of t h e  c a r r i e r .  This i s  equivalent t o  an increase  i n  t h e  
negative sweep voltage by a c e r t a i n  magnitude AU,. The l a w  of t h e  conservation 
of energy states t h a t  

(12,.I V )  

where Avo is  t h e  ve loc i ty  component along t h e  axis  of t h e  analyzer, e i s  t h e  
e l ec t ron  charge i n  e l e c t r o s t a t i c  units, M i s  t h e  mass number of t h e  ion, and mo 
i s  the  atomic mass unit. 

Equation (12.m) i n d i c a t e s  t h a t  a change i n  t h e  e f f e c t i v e  sweep voltage 
due t o  t h e  ve loc i ty  e f f e c t  AU, depends on t h e  i o n  mass; f o r  l i g h t  i ons  i t  i s  
less. For example, t h e  value of AU,, when t h e  instrument i s  mounted on a satel
l i t e  moving with a ve loc i ty  of vo =. 8 X lo" cm/sec, f o r  ions with M = 16 i s  
5.35 v and f o r  i ons  with M = 30, about 10 v. Thus, t h e  e f f e c t i v e  sweep voltage 
with consideration of both f a c t o r s  i n  question here i s  

Ur =Up fcp + A U , .  (13 IV) 

The real mass number corresponding t o  t h e  i o n  cur ren t  peak on t h e  telemetry 
recording, i n  conformity with t h e  basic formula ( 8 . I V ) ,  w i l l  be 

where k = 	 r2f2 i s  t h e  instrument constant, Mdec i s  t h e  mass number of t h e
0.266 

peak determined upon decoding t h e  recording with respect t o  t h e  magnitude of 
t h e  sweep voltage Up or from a c a l i b r a t i o n  curve, AM i s  t h e  cor rec t ion  f o r  t h e  
charge of t h e  capsule, AM, i s  t h e  ve loc i ty  co r rec t iox  determined by mapping t h e  
ve loc i ty  of t h e  space vehic le  vo onto t h e  a x i s  of t h e  analyzer. 

It i s  apparent from eq . (a . IV)  t h a t  t h e  mass number of t h e  i o n  current 
peak M d e c ,  determined by decoding t h e  telemetry recording on t h e  basis of labora
t o r y  data,  i s  usua l ly  less than t h e  real value of t h e  mass number M r e a l ;i n  &L 
other  words, when measurements are taken on a r ap id ly  moving capsule t h e  i n s t ru 
ment s ca l e  shifts toward l i g h t  masses, with t h e  magnitude of this shift depend
ing  on t h e  mass of t h e  ions.  Using eq.(l2.IV), we f i n a l l y  obta in  

For example, t h e  RMS-lmass spectrometer i n s t a l l e d  on t h e  t h i r d  Soviet 
satell i te had an instrument constant of k = 7.2 a.m.u./v (Bibl.7) and a suffi
c i en t ly  s t a b l e  negative p o t e n t i a l  of about cp = -3 v (Bibl.6). In this case, 
t h e  correction AMv= 0.42 a.m.u. and a maximum shift of t h e  mass peaks produced 
by t h e  ve loc i ty  e f f e c t ,  as follows from eq.(lS.IV) a t  v = 8 x lo6 cm/sec, was 
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0.74. a.m.u. f o r  mass 16 and 1.39 a.m.u. f o r  mass 30 ( n i t r i c  oxi-de). There i s  
no ve loc i ty  cor rec t ion  when t h e  axis  of t h e  analyzer i s  along a normal t o  t h e  
ve loc i ty  vector of t h e  capsule. 

It must be borne i n  mind t h a t  t h e  presence of t h e  negative capsule p o t e n t i a l  
cp and of t h e  ordered ve loc i ty  of t h e  i o n  f lux v l e a d s  t o  a decrease i n  t h e  
e f f e c t i v e  stopping p o t e n t i a l  Ift < Ut by a value of cp + AU,. A s  a result of t h e  
drop i n  stopping po ten t i a l ,  t h e  s e n s i t i v i t y  of t h e  m a s s  spectrometer i n  f l i g h t  
increases,  more f o r  heavy ions  than  for l i g h t  ions, i.e., t h e  discrimination 
e f f e c t  occurs. The m a s s  r e so lu t ion  correspondingly drops i n  comparison wi th  
t h e  adjustment parameters. The increase  i n  s e n s i t i v i t y ,  i n  tu rn ,  l eads  t o  t h e  
appearance or enhancement of harmonic peaks on t h e  recording. Thus, t h e  RMS-1 
instrument, adjusted t o  a r e so lu t ion  of R - 20 i n  t h e  region of mass numbers 
M = 20 a.m.u., ac tua l ly  had a r e so lu t ion  of R "  10 i n  t h e  reg ion  of M = 16 a.m.u. 
(Bibl.6). A s  a result, t h e  mass peaks i n  t h e  region of l i g h t  masses were com
p l e t e l y  resolved i f  t h e i r  mass nunbers d i f f e red  a p p r o d t e l y  by 2 a.m.u. or 
more, whereas i n  t h e  region of heavy masses (M 30) t h e  peaks f o r  hM = 2 a.m.u. 
were resolved incompletely a t  t h e  zero l e v e l .  

However, t h e  presence of harmonic peaks made it poss ib l e  t o  broaden t h e  
dynamic range of t h e  i n s t r m e n t  toward higher s e n s i t i v i t i e s  s ince ,  on satura
t i o n  of  even t h e  low-sensit ivity output ( ion  current above -7, t h e  
amplitudes of t h e  peaks could be estimated by t h e  harmonics, t h e  l i g h t  harmonic 
for atomic oxygen M = 16 being on t h e  average 0.1 of t h e  amplitude of t h e  main 
peak (Bibl.6). 

c )  Role of Drocesses i n  t h e  analyzer. The gas mixture taken i n t o  t h e  ana
lyze r  un&-goes various changes produced during t h e  inflow of gas i n t o  t h e  
analyzer and wi th in  it, during various i n t e r a c t i o n s  between t h e  n e u t r a l  par-

/92 
t i c l e s ,  ions,  electrons,  and walls of t h e  instrument. Certain of t hese  pro
cesses may noticeably change t h e  gas composition or t h e  concentration of t h e  
ind iv idua l  components. 

Enrichment of  t h e  gas taken i n t o  t h e  analyzer, by heavy or l i g h t  components, 
may t ake  place w h i l e  t h e  gas passes t h e  in take ,  as a func t ion  of i t s  orienta
t ion .  T h i s  phenomenon, known as m a s s  s e l ec t ion ,  i s  observed [as mentioned by 
A.I.Repnev (Bib1.27)] i n  a free molecular stream i n  t h e  presence of unsteady 
processes and a dens i ty  grad ien t  i n  t h e  instrument. The method of allowing for 
t h e  m a s s  s e l ec t ion  phenomenon i s  analyzed i n  t h e  d iscuss ion  on gas component 
analyses i n  processing t h e  da ta .  

The i n e l a s t i c  c o l l i s i o n s  of neu t r a l  p a r t i c l e s  of t h e  gas mixture may cause 
exc i t a t ion  of t h e  e l ec t ron ic ,  v ibra t iona l ,  and r o t a t i o n a l  levels of t h e  mole
cules,  t r a n s f e r  of e l ec t ron  exc i ta t ion ,  v ibra t ions ,  or ro t a t ion ,  and ion iza t ion ,  
recombination, d i ssoc ia t ion ,  e t c .  There a l s o  may be c o l l i s i o n s  of photons with 
neu t r a l  p a r t i c l e s ,  r e s u l t i n g  i n  exc i t a t ion  and ion iza t ion  of i o n s  and i n  excita
t i o n  of ion iza t ion  and d i s soc ia t ion  of molecules. The atoms may recombine upon 
c o l l i s i o n s  with t h i r d  p a r t i c l e s  o n t h e i r t r a v e l  t o  t h e  i o n  source, if this pa th  
i s  s u f f i c i e n t l y  long. An estimate shows, however, t h a t  t h e  e f f i c i ency  of t hese  
processes i n  t h e  presence of t h e  necessary design c h a r a c t e r i s t i c s  of t h e  ana
l y z e r  i s  not high and t h a t ,  at va r i a t ions  i n  t h e  gas composition under t h e i r  
e f f e c t ,  they can be disregarded in first approximation (Bib1.28). 
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I n e l a s t i c  c o l l i s i o n s  of charged p a r t i c l e s  with n e u t r a l  p a r t i c l e s ,  i n  addi
t i o n  t o  d issoc ia t ion ,  ion iza t ion ,  and exc i ta t ion ,  may result i n  t h e  formation 
of heavy ions  and i n  charge t r ans fe r .  Col l i s ions  wi th  e lec t rons ,  leading t o  t h e  
production of p o s i t i v e  ions, spec i f i ca l ly  t a k e  p l a c e  in t h e  i o n  source of t h e  
analyzer. The i o n  current I generated under t h e  e f f e c t  of a focused c y l i n d r i c a l  
e l ec t ron  beam (Bibl.2) i s  determined by t h e  expression 

I = i N , Q d ,  (16. I V )  

where i i s  t h e  e l ec t ron  current of t h e  source,N, i s  t h e  dens i ty  of neu t r a l  
p a r t i c l e s  i n  t h e  ion iza t ion  space, C i s  t h e  e f f e c t i v e  i o n i z a t i o n  c ross  section, 
and d i s  t h e  dimension of t h e  i o n  source over t h e  p a t h  of t h e  e l ec t ron  beam. 

The e f f e c t i v e  c ross  sec t ion  Q depends on t h e  type of molecule or atom and 
on t h e  e lec t ron  energy, which reach a maximum f o r  most gases i n  t h e  energy 
range of 70 - 100 ev. These energies of t h e  ion iz ing  e l ec t rons  are genera l ly  
u t i l i z e d  i n  mass spectrometers. The e f f e c t i v e  c ros s  sec t ions  f o r  t h e  produc
t i o n  of negative ions  of t h e  basic components of t h e  atmosphere i n  this case are 
much smaller than  t h e  cross sec t ions  f o r  t h e  production of p o s i t i v e  ions  L92 
(Bib1.28); therefore,  t h e  e f f e c t s  of t h e  a c t i o n  of negative ions  are usually 
disregarded. The f a c t  t h a t  t h e  c ross  sec t ion  i s  dependent on t h e  type of gas 
causes t h e  r a t i o  of t h e  i o n  currents of two given components t o  differ from t h e  
r a t i o  of t h e i r  p a r t i a l  p ressures  i n  t h e  i o n  source. A t  present,  it i s  d i f f i c u l t  
t o  take  this e f f e c t  i n t o  account because of t h e  l ack  of r e l i a b l e  da t a  on t h e  
e f f e c t i v e  c ross  sec t ions  of gas ion iza t ion .  For example, according t o  ava i l ab le  
da ta  (Bib1.28), t h e  c ross  sec t ion  of m a x i m u m  ion iza t ion  f o r  He and Ar di f fe r  by 
one quarter magnitude (approximately 3 X and 3 X cm2). 

The p robab i l i t y  of molecule d i s soc ia t ion  on c o l l i s i o n  wi th  e lec t rons  of t h e  
i o n  source i s  not g rea t .  For nitrogen molecules, this e f f e c t  i s  v i r t u a l l y  
absent whereas t h e  number of d i s soc ia t ing  events of hydrogen molecules does not 

exceed -of t h e  ion iz ing  events of t hese  molecules (Bib1.28).
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The e f f e c t  of charge t r a n s f e r  may l ead  t o  t h e  production of i ons  of new 
sorts, which are absent i n  t h e  free atmosphere. T h i s  must be borne i n  mind when 
analyzing t h e  i o n  composition. The extent of t h e  charge t r a n s f e r  e f f e c t  i s  
small. Thus, t h e  relative number of i ons  $, undergoing charge t r a n s f e r  over a 
pa th  of 1cm a t  a pressure  below rmn Hg does not exceed 0.1%. T h i s  means 
t h a t  t h e  production of no t  more than  0.1% l$ i ons  with respec t  t o  primary $ 
i ons  i s  poss ib le  (Bib1.28). 

The e f f ec t ive  c ross  sec t ions  f o r  mul t ip le  ion iza t ion ,  a t  an e lec t ron  
energy of about 100 ev, are much smaller (by one t o  t h r e e  orders of magnitude) 
than  t h e  cross sec t ions  f o r  s ing le  ion iza t ion  (Bibl.15). I n  some cases, t h e  
p o s s i b i l i t y  of double ion iza t ion  and d i s soc ia t ion  of molecules must be considered 
( f o r  02, C02, N20, e tc . ) .  

Processes of i n t e r a c t i o n  of p a r t i c l e s  wi th  t h e  walls and e lec t rodes  of t h e  
analyzer p lay  t h e  most important r o l e  i n  t h e  formation of t h e  gas mixture compo
s i t i o n .  

82 



Recombinations of atoms (0, N, H, e tc . )  as they  take  p l ace  i n  t h e  upper
atmosphere are compensated by t h e  photodissociation reactions.  After s t r i k i n g  
t h e  instrument, t h e  equilibrium i s  disturbed and t h e  number of atoms decreases 
under t h e  e f f e c t  of recombination processes. 

A s  a result of t h e  c o l l i s i o n  of p a r t i c l e s  with t h e  w a l l ,  they are 
adsorbed or absorbed ( i n  t h e  l a t te r  case, t h e  p a r t i c l e  pene t r a t e s  i n s i d e  t h e  
body). On t h e  surface, chemical reac t ions  may t a k e  place,  spec i f i ca l ly  re
combinations of t h e  absorbed atom wi th  an  atom impinging on t h e  surface. 

Upon co l l i s ion ,  t h e  p a r t i c l e  remains on t h e  sur face  f o r  a c e r t a i n  t i m e ,  
exchanging energy with t h e  atoms of t h e  c r y s t a l  l a t t i c e .  The p a r t i c l e s  adapt 
themselves t o  t h e  temperature of t h e  instrument w a l l s .  The accommodation coef
f i c i e n t ,  charac te r iz ing  t h e  degree t o  which t h e  p a r t i c l e s  absorb t h e  temperature 
of t h e  wall i f  t h e  surface i s  covered with a l a y e r  of adsorbed gas, reaches & 
a value of 0.8 - 0.9 (Bib1.28). In t h e  technique of mass spectrometer measure
ments it i s  usually considered t h a t  complete accomodation of t h e  p a r t i c l e s  t o  
t h e  w a l l  temperature occurs during t h e  residence time i n  t h e  instrument, when 
the re  a r e  many co l l i s ions .  

The sorp t ion  phenomena on t h e  hot f i laments of t h e  i o n  source i n  a neu t r a l  
ana lys i s  lead t o  an i n t e r a c t i o n  of oxygen and carbon of t h e  filament, which 
results i n  the  formation of CO and C02 molecules and i n  a decrease i n  t h e  o q g e n  
content of t h e  mixture. 

Recombination i n  t h e  analyzer i s  e spec ia l ly  extensive f o r  oqygen which i s  
t h e  main atmosphere component a t  heights of 200 - 4.00 km. An ana lys i s  of t hese  
e f f e c t s ,  as it was performed by A.I.Repnev (Bib1.29) on t h e  assumption t h a t  only 
oxygen atoms whose concentration i s  equal t o  No are present  i n  t h e  atmosphere, 
l eads  t o  the  following s impl i f ied  equation f o r  t h e  rate of formatior. of 0 2  
molecules: 

where NO2 and N are t h e  concentrations of o q g e n  molecules and third p a r t i c l e s  
t h a t  en t r a in  the  excess energy i n  co l l i s ions ,  k1 i s  a constant of t h e  reac t ion  
ve loc i ty  of t r i p l e  co l l i s ions ,  and b2 are constants of t h e  reac t ion  ve loc i ty  
of recombination upon c o l l i s i o n s  of two atoms with t h e  w a l l  and with t h e  ad
sorbed molecules where t h e  w a l l  p l ays  t h e  r o l e  of a t h i r d  body, TI i s  t h e  tem
pera ture  of t h e  i n s i d e  surface of t h e  analyzer, A1 i s  t h e  area of t h e  sur faces  
on which recombination takes  place, w i s  t h e  volume of t h e  analyzer, and y is  a 
coe f f i c i en t  charac te r iz ing  t h e  p robab i l i t y  of recombination on t h e  w a l l .  

An ana lys i s  of eq.(l7.IV) shows t h a t  t h e  e f f i c i ency  of t h e  recombination 
processes a t  t h e  walls of an ordinary analyzer exceeds t h e  e f f i c i ency  of o the r  
recombination processes by more than  a f a c t o r  of 100 at  a low atomic oxygen 
pressure  po c lom3 mm Hg (above t h e  level of about 90 km i n  t h e  atmosphere). 
The e f f e c t  of recombination can subs t an t i a l ly  decrease provided t h e  product 



A1 

y A, where A i s  t h e  area of t h e  inlet of t h e  analyzer, has a low value. T h i s  

i s  low, i n  pa r t i cu la r ,  f o r  g l a s s  analyzers (for glass ,  y = lo-"). If the re  are 
heated surfaces  i n  t h e  analyzer, t h e  atomic p a r t i c l e  concentration of many gases 
w i l l  decrease and t h e  molecule concentration w i l l  increase.  T h i s  e f f ec t  must 
be taken i n t o  account i n  determining t h e  gas concentration when processing the  
mass-spectrometer da ta  ( see  Sect.6). Bombardment of t h e  in s ide  surfaces  and & 
electrodes of t h e  analyzer by charged p a r t i c l e s  or by high-energy quanta radi
a ted  by t h e  sun l eads  t o  t h e  production of secondary e lec t rons  which, according 
t o  da ta  by Bernard (Bibl.2), may noticeably change t h e  t o t a l  current passing 
through t h e  instrument. There i s  an espec ia l ly  severe d i s t o r t i n g  e f f ec t  of 
secondary emission when a secondary emission amplifier i s  used as t h e  ion  re
ceiver.  I n  making r e l a t i v e  measurements, these  defects  are disregarded 
(Bib1.28). 

Section 6. P r e b i n a r y  Processing of t h e  T e s t  Data 

The telemetry recordings of t h e  mass spectrometer da ta  f o r  a l l  amplifier 
outputs of d i f f e ren t  s e n s i t i v i t i e s  are processed together  s ince  minor ad
mixtures of gases are not iceable  only at  t h e  output of maximum sens i t i v i ty ,  
whereas t h e  main gas components a t  this output y i e l d  broad overshoots which can 
be loca l ized  only with respect  t o  t h e  low-sensit ivity output. For example, t h e  
recordings obtained from t h e  t h i r d  satell i te on May 23, 1958 [height 230 km, 
l a t i t u d e  5 5 O N  (Bibl.?)] are shown i n  Fig.8a.IV. A s  we see, t he re  are numerous 
harmonic peaks on t h e  recording of t h e  mass spectrum f o r  t h e  high-sensit ivity 
channel, w h i l e  t h e  reso lu t ion  i n  t h e  region of l a rge  mass numbers i s  substanti
a l l y  lowered (owing t o  a decrease i n  Ut). 

Processing of t h e  recording begins with separat ion i n t o  subranges and de
termination of t h e  mass numbers corresponding t o  t h e  peaks on t h e  recording 
from t h e  instrument ca l ib ra t ion  curve. The time from t h e  start of recording 
of each subrange i s  determined by markers on t h e  recording. The separat ion of 
t h e  fundamental and harmonic peaks ( i f  t h e r e  are any) i n  t h e  spec t ra  i s  done by 
comparing t h e i r  amplitu6es and t h e  character  of change i n  r e l a t i o n  t o  t h e  f l i g h t  
a l t i t u d e  and o r i en ta t ion  of t h e  instrument. The l o c i  of t h e  harmonic peaks and 
t h e i r  width are determined from t h e  da ta  of laboratory tests of t h e  instruments. 

After introducing t h e  ve loc i ty  correct ion i n  accordance with eqs.( 12 . IV)  
and ( a . I V ) ,  t h e  mass numbers of t h e  peaks taken as t h e  fundamental peaks w i l l  
differ from whole even numbers by a f r ac t ion  of an atomic mass unit. T h i s  d i f 
ference i s  usually due t o  t h e  e f f e c t  of t h e  negative charge of t h e  satell i te 
a.nd i s  used i n  conformity with eq.(&.IV), f o r  determining t h e  negative p o t e n t i a l  
of t h e  satell i te.  For example, on t h e  recordings of t h e  t h i r d  satell i te on 
May 22, this difference was 0.3 a.m.u., which f o r  k = 7.2 a.m.u./v y i e lds  cp = 
= -2.2 v (Bibl.7). 

The curves i n  F'ig.8a.m were obtained at a poten t ia lcp  of about zero. The 
mass peaks, given here with consideration of t h e  ve loc i ty  correction, were 
i d e n t i f i e d  as follows: 16 - O+, & - N' , 18 - oxygen isotope, 30 - NO', 
32 - O:, and 28 - G. A l l  o ther  peaks i n  Fig.8a.IV are harmonic (spurious). /96 



Thus, peaks with m a s s  numbers of 10, 5, and 12  are ' t l ightt '  harmonics with peaks 
of l.!+ and 16 respectively,  whereas t h e  peak with t h e  m a s s  number 22.5 ( a t  t h e  
center)  cons is t s  of l i g h t  harmonics with peaks of 28, 30, and 32. The peaks 
with t h e  mass numbers 40 and 43 are ''heavytt harmonics with peaks of 28 and 30. 
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Fig.8.m Examples of Recordings of Mass Spectrometer 
Signals,  Used on t h e  Third S a t e l l i t e  ( a )  and on a 

Geophysical Rocket (b) . 
I - Output of low-sensit ivity channel; I1 - Medium; I11 - High. 

The concentration of p a r t i c l e s  i s  determined from t h e  amplitude value, de
f ined from markers of reference vol tage on t h e  telemetry sca l e  on t h e  recordin 
of which an example i s  shown i n  Fig.8b.IV. 

In t h e  i o n  analysis ,  t h e  amplitude of t h e  peak i n  a channel of given sensi
t i v i t y  iMis  re l a t ed  with t h e  concentration of corresponding ions  nM. For a 
rapidly moving capsule, when t h e  thermal veloci tdes  of t h e  ions  are much less 
than i t s  ve loc i ty  vo, this r e l a t i o n  will obviously have t h e  form 
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-
41=n,@vs,ff ( e ,  M, cp) rl (M, cp, vo), (18.IV) 

where e i s  t h e  i o n  charge; se f fi s  t h e  e f f e c t i v e  c ross  szc t ion  of t h e  analyzer 
inlet  depending on t h e  angle 8 with  t h e  ve loc i ty  vec tor  vo, on t h e  mass number 
of t h e  ions  M and on t h e  c a p s d e  p o t e n t i a l  cp;  ‘ll i s  t h e  cur ren t  e f f ic iency  of 
t h e  analyzer equal t o  t h e  r a t i o  of t h e  cur ren t  of i ons  of m a s s  M entering t h e  
analyzer t o  t h e  cur ren t  of t hese  i o n s  a t  t h e  c o l l e c t o r  iM. 

To determine t h e  concentration nM, t h e  dependence of t h e  parameters se f 

and ‘ll on t h e  capsule po ten t i a l ,  i o n  m a s s ,  and angle 8 or veloc i ty  vo must be 
known. However, t hese  parameters were not determined i n  t h e  discussed experi
ments. 

I n  processing t h e  d a t a  co l lec ted  by t h e  t h i r d  satel l i te  (Bibl.6), a number 
of important conclusions as t o  t h e  change i n  relative concentration of p o s i t i v e  
ions  were drawn on t h e  bas i s  of eq.(l8.IV) f o r  an i d e n t i c a l  o r i en ta t ion  of t h e  
instrument 8 = 0 and at  a ce r t a in  satel l i te  poten t ia lcp .  The constancy of t h e  
l a t te r  was checked on t h e  constancy of t h e  relative l e v e l  of t h e  harmonic peaks 
on t h e  recording, s ince  this level i s  highly s e n s i t i v e  t o  t h e  magetude of t h e  
e f f e c t i v e  stopping p o t e n t i a l  Ut. The e f f e c t s  of mass discrimination are sub
s t a n t i a l  only f o r  groups of i ons  with g r e a t l y  d i f f e r i n g  masses. Therefore, t h e  
r a t i o s  of adjacent peaks iMshould be equal t o  t h e  r a t i o  of t h e  concentration 
of given groups of ions  nM i n  t h e  atmosphere 

I n  addition, V.G.Istomin (Bibl.9), i n  processing t h e  t es t  data,  made t h e  
following assmpt ions :  a )  The sum of t h e  concentration of p o s i t i v e  ions  i s  equal 
t o  t h e  e lec t ron  concentration CnM = ne ,  i.e., t h e  value of negative i o n  concen
t r a t i o n  can be disregarded; b )  t h e  sum of t h e  amplitudes of t h e  i o n  peaks on t h e  
mass spectrogram i s  propor t iona l  t o  t h e  t o t a l  p o s i t i v e  i o n  concentration X i M  = 
= E n M .  I n  this case, as , fo l lows  from ea.(l9.IV). t h e  absolu te  concentration 
of i ons  with mass number MI can be detemkned from t h e  r e l a t i o n  

(20. IV) 

The values of e l ec t ron  concentration n, were taken from da ta  obtained /98
by o ther  methods, w h i l e  t h e  values of t h e  peak amplitude i M ,  and t h e  sum CiM
Are determined from t h e  recording. 

The p o t e n t i a l  of t h e  capsule cp has no e f f e c t  on t h e  results of measuring 
t h e  neu t r a l  p a r t i c l e  concentration; however, it i s  then necessary t o  allow f o r  
t h e  e f f e c t s  of mass se l ec t ion  and d i s t o r t i o n s  caused by t h e  r e f l ec t ed  f lux .  

Mass se l ec t ion  i s  caused by t h e  f a c t  t h a t  t h e  moving mass-spectrometer 
analyzer i s  s t ruck  by a mixture of gases r a re f i ed  so much t h a t  t h e  p a r t i c l e s  of 
each component move independently of one another. If t h e  oncoming flow en te r s  
t h e  analyzer, t h e  mixture Will be enriched by heavy components and, a t  opposite 
or ien ta t ion ,  by l i g h t  components. 
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Let t h e  analyzer have a volume w and an in t ake  of an area s. If, at  t h e  
i n s t a n t  t = 0, t h e  evacuated cav i ty  of t h e  capsule moving at  a ve loc i ty  vo i s  

opened, then -H ( @ ) s  d t  p a r t i c l e s  w i l l  e n t e r  t h e  volume during t h e  time d t  
2 F  

( see  Chapt.111, Sect.4). A s  a result, t h e  p a r t i c l e  dens i ty  i n  t h e  instrument N1 
increases  by a value d N l  equal t o  

(21.IV) 


During t h e  same time, a stream of p a r t i c l e s  which has acquired t h e  wall 
temperature Tl as a result of co l l i s ions ,  Will escape from t h e  volume of t h e  
analyzer. This l eads  t o  a decrease i n  p a r t i c l e  dens i ty  N1 i n  t h e  volume by 

aA?- d t  where vl i s  t h e  ve loc i ty  and N1 t h e  dens i ty  of t h e  p a r t i c l e s  a t  a 
2 f i  

temperature TI. 

Considering t h a t  No depends on t i m e ,  i n  consequence of t h e  ascent of t h e  
capsule a t  a v e r t i c a l  ve loc i ty  component vo i n  the  atmosphere where t h e  pressure  
drops w i t h  a l t i t u d e  according t o  t h e  barometric formula and t h a t  v and . ( a )  do 
not depend on time, A.I.Repnev (Bib1.27) after c e r t a i n  s impl i f i ca t ions  solved 
t h e  equation of p a r t i c l e  balance i n  t h e  form of 

(22. IV) 

2w .fiwhere 71 = -i s  the  time after which ( a f t e r  opening) t h e  mass s e l e c t i o n  
Vl s 

e f f e c t  begins t o  appear. 

Using eq.(22.IV) t h e  r a t i o  of p a r t i c l e  concentrations of two atmospheric 
gases d i f f e r i n g  by t h e  molecular weights M and M' w i l l  be obtained i n  t h e  form of 

w1 st 

N O-N,x'(P') (
(1 -e-*) N ;  IL9 (23 IV)N;, 

1 - e  

where N1 and N\ are t h e  concentrations of t h e  corresponding gases i n  t h e  ana
l y z e r  volume. 

The coe f f i c i en t  p by which t h e  measured gas concentration r a t i o s  must be 
multiplied t o  obta in  t h e i r  r a t i o  i n  t h e  atmosphere i s  known as t h e  coe f f i c i en t  
of mass se lec t ion .  

Under equilibrium conditions, when t h e  time terms cease being a f ac to r ,  
t h e  s e l ec t ion  i s  determined by t h e  r a t i o  
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I n  this case, when t h e  veloci ty  of t h e  capsule i s  high (B > 1.5 - 2), t h e  
function x(B) N 2 m  and t h e  coef f ic ien t  po are transformed i n t o  

The values of po and poo were calculated by Repnev (Bib1.27) f o r  various 
conditions, For example, i n  measuring t h e  concentration r a t i o  of molecular 
ni t rogen N2 t o  atomic oxygen 0 t h e  cor rec t ion  coef f ic ien t  i s  po0 = 1.323 and f o r  
N2 and He, cloo = 0.266. 

An analysis  of t h e  d i s to r t ions  introduced by t h e  e f f e c t  of t h e  r e f l ec t ed  
flux, made by A.A.Pokhunkov (Bib1.26), confirms t h a t  mainly recombinations of 
chemically ac t ive  atomic components of t h e  atmosphere on t h e  analyzer surfaces  
must be allowed for. To take  this e f f e c t  i n t o  consideration, Pokhunkov i n t r o 
duced t h e  correct ion coef f ic ien t  K,. A ca lcu la t ion  shows t h a t ,  i f  t h e  in s ide  
surfaces  of t h e  analyzer are gold-plated, t h e  correct ion f o r  recombination - even 
f o r  atomic oxygen - i s  negl ig ib le  (K, 2 1.1). 

Thus, mass-spectrometer data  can be used a l so  f o r  obtaining information on 
t h e  concentration not only on i n e r t  but a l s o  on chemically ac t ive  components of 
t h e  atmosphere. 

Consequently, it i s  poss ib le  t o  determine t h e  temperature of t h e  atmosphere 
under conditions of a free molecular flow p a s t  t h e  capsule ( see  Chapt.111, 
s e c t  .5). 

The computational formulas (&.IV) and (25 .IV) are va l id  under t h e  as- /100
s q t i o n  of a free molecular s ta t ionary  flow and t h e  presence of a l o c a l  M a x 
wel l ian veloci ty  d i s t r i b u t i o n  i n  the  atmosphere. The condition of a free 
molecular flow pas t  t h e  instrument A 2 10 L (where A i s  t h e  mean free pa th  of 
t h e  molecules, and L i s  a cha rac t e r i s t i c  dimension of t h e  instrument) i s  satis
f i e d  a t  heights of about 150 km and more, where A * 5 m. A steady state of t h e  
flow (equal i ty  of t h e  number of incoming and outgoingpar t ic les )  i s  ensured i f  
t h e  t h e  constant of t h e  instrument 7 i s  much less than t h e  time during which 
t h e  densi ty  along t h e  o r b i t  changes noticeably. 

It follows from t h e  previously derived formula [eq.(47.111)] t h a t  t h e  
magnitudes of TI, for t h e  mass spectrometers i n  present  use, are of t h e  o q e r  of 
t ens  o r  one millisecond. Thus, i n  t h e  case ofiw = 250 cm" and s = 0.8 cm at  a 
height of about 150 km we obtain 1 = 1.5 X 10 sec. A t  a d is tance  of about 
120 m, which t h e  satel l i te  w i l l  t raverse  during this time on a c i r c u l a r  o rb i t ,  
t h e  densi ty  changes are not grea t .  

I n  estimating t h e  e r r o r s  of determining t h e  temperature, M.N.Izakov 

(Bibl.5) s t a r t e d  from t h e  e r r o r  i n  measuring t h e  p a r t i a l  pressure 6p/p = 5%. 

With an e r r o r  of measurement f o r  t h e  wall temperature of t h e  analyzer of not 


88 



more than *lo at  t h e  temperature level TI = TZ = 300 - 4OO0K, t h e  e r r o r  in t ro
duced by the  temperature terms w i l l  not exceed 1%. The e r r o r  i n  determining t h e  
veloci ty  of t h e  satellite, with consideration of wind, may reach 2.5%. The 
e r r o r  i n  determining t h e  angle cp i s  estimated as being 6 c p z  +0.5R. In  this 
case, t h e  mean-square e r r o r  of an ind iv idua l  measurement f o r  cp = 0 is  estimated 
t o  be 14.- 19% (depending on height) w h i l e  f o r  cp < -5" t h e  e r r o r  drops t o  7435%. 

The e r r o r  of t h e  method will decrease by a f a c t o r  of 3 i f  a t o t a l  of t e n  
measurements are made during t h e  time of a small temperature change (about 
1 sec) .  

CHAPTER v 

Section 1. Charac ter i s t ics  o f ~ M z s u r e dQuantit ies 

In  t h e  f l u x  of cosmic radiat ion,  primary and secondary components are 
distinguished. 

The primary f l u x  (outs ide  t h e  earth's atmosphere) contains rays of ga l ac t i c
and s o l a r  or igin.  

The primary f l u x  of g a l a c t i c  o r i g i n  i s  i so t rop ic  and cons is t s  of t h e  nuc le i  
of various elements, accelerated t o  very high energies (up t o  E = Id-"ev). The 
f l u x  i s  composed mainly of protons which account f o r  about 80% of t h e  t o t a l  
number of p a r t i c l e s  (Bibl.71). The densi ty  of t h e  i so t rop ic  proton f l u x  i n  
space changes l i t t l e  and averages 2 - 2.5 cm-2-sec'1 (Bib1.27, 46), with f101 
protons of very high energies (more than 10'" ev) r a re ly  encountered ( a t  Ep = 
= Id ev, t h e  average i n t e n s i t y  i s  cm-2 =sed*steradian? ) In addi t ion  
t o  protons, a -par t ic les  (approximately 0.3 cm-2 Osec-l) and nuclei  of heavier 
elements [accounting for only 1- 2% of t h e  t o t a l  f l u x  (Bibl.30)I are observed 
i n  t h e  primary f lux .  The primary fluxes are usually measured with respect t o  
groups of nuclei  of l i g h t  elements L (Li, Be, and B), medium elements M (C, N, 
0, and F)  and heavy elements H (with an atomic number z 2 10). 

The f luxes of primary cosnic rays of solar or ig in  are associated with 
chromosphere flares, but not i n  a l l  flares are t h e  p a r t i c l e s  accelerated t o  high 
ener ies.  Thus, flares i n  which protons are emitted with an energy t o  10 Bev(ldB ev) are observed once every th ree  t o  four  years (Bib1.58). In rays of 
s o l a r  or igin,  as i n  a l a c t i c ,  protons predominate but  t h e i r  energy i s  less 
(from lo" t o  Id1 evy, w h i l e  t h e  f l u x  i n  t h e  region of t h e  ear th ' s  o r b i t  reaches 
very high values [up t o  lo9 - Id2  -set'-' (Bibl.45 - 72)1. 

The flux of low-energy e lec t rons  (E, 1- 10 ev) may exceed t h e  proton 
f l u x  by several  t e n s  of times (Bib1.27, 66, 72). Furthermore, nuc le i  of He, 
(15%), 0, C, (0.1% each), N (O.Ol$), and of o ther  elements ( i n  s t i l l  smaller 
quant i t ies )  are observed in t h e  s o l a r  corpuscular flux. 

The stream of e lec t rons  emitted by t h e  sun under normal conditions reaches 



lo7 - 10'" cf2 *sec-', with a p a r t i c l e  e n e r a  from 2 ev t o  10 Kev (Bibl.58, 73). 

The sun a l s o  emits a high-energy f l u x  of electromagnetic pene t ra t ing  radia
t i o n  (X- and y-radiation).  According t o  d a t a  by W.O.Roberts (Bibl.28) t h e  flux 
of s o f t  X-radiation of t h e  sun amounts t o  - lo-* erg*cm-2 'see- '' but it is  
subject t o  wide f luc tua t ions .  The magnitude of t h e  f lux of gamma-radiation 
quanta(energy P1Mev) i s  usua l ly  by one t o  two orders  less than t h e  X-radia
t ion .  

An important c h a r a c t e r i s t i c  of primary cosmic rays  i s  t h e  dependence of t h e  
f l u x  dens i ty  and p a r t i c l e  energy on t h e  l a t i t u d e  of observation, t h e  f lux being 
enriched by lower-energy p a r t i c l e s  with an inc rease  of t h e  geomagnetic l a t i t u d e  
beyond a c e r t a i n  l i m i t  [ e f f e c t  of l a t i t u d e  cutoff (Bib1.27)l. 

On i n t e r a c t i o n  of t h e  p a r t i c l e s  of t h e  primary cosmic r ad ia t ion  flux w i t h  
atmospheric gases, a secondary f lux of increas ing  dens i ty  is formed. Maximum 
development of this flux i s  observed at  heights of 20 - 22 km, and all known 
p a r t i c l e s  [secondary protons, mesons, neutrons, e t c .  (Bib1.24) 1 are present & 
i n  it. On approaching t h e  ear th ' s  surface, t h e  i n t e n s i t y  of t h e  flux of cosmic 
rays decreases, from a m a x i "  level, by a f a c t o r  of 50 - 150, depending on 
l a t i t u d e .  

Fig.1.V Radiation B e l t s  of t h e  Ea r th .  

Secondary cosmic rays are usually divided i n t o  a s o f t  component which i s  
stopped by a l a y e r  of lead  of 10 cm thickness,  a hard component pene t ra t ing  
through such a filter, and a nucleonic component. 

The s o f t  component cons i s t s  mainly of electrons,  pos i t rons ,  and photons. 
The hard component contains heavier p a r t i c l e s ,  mainly mesons. The re la t ionship  
between t h e  fluxes of t h e  various components varies with height and depends on 

+c On converting t h e  flux t o  energy units, we are assuming t h a t  1 ev = 1.6 X 

x erg. 



t h e  geophysical conditions. A t  sea level, f o r  example, t h e  proportion of t h e  
s o f t  component i s  about 30% of t h e  t o t a l  flux (Bibl.20, a). 

Cosmic rays undergo va r i a t ions  (change i n  i n t e n s i t y )  caused by changes i n  
t h e  atmospheric conditions, t h e  e a r t h t s  magnetic f i e l d ,  or t h e  conditions of 
space. The va r i a t ions  may have a r egu la r  charac te r  caused, f o r  example, by 
periods of s o l a r  a c t i v i t y ,  or a random character.  bw-energy p a r t i c l e s  undergo 
t h e  g rea t e s t  va r i a t ions  (Bib1.27). 

Inves t iga t ions  of cosmic rays  i n  t h e  upper atmosphere, by means of equip
ment i n s t a l l e d  on board rocke ts  and satellites, l e d  t o  t h e  recent discovery of 
t h e  e a r t h t s  radiatiorL b e l t s .  

An idea  as t o  t h e  streams of p a r t i c l e s  and energies, subjec t  t o  measurement 
i n  t h e  r ad ia t ion  b e l t s  of t h e  ear th ,  can be obtained from Fig.1.V where t h e  
pos i t i on  of t h e  b e l t s  i n  t h e  geomagnetic f i e l d  i s  given and t h e  p a r t i c l e  fluxes 
are indica ted  i n  m a x i m u m  i n t e n s i t i e s  based on t h e  d a t a  of a number of authors 
(Bibl.6 - 16, 38 - 44, 57, 58, 72 - 79). Taking i n t o  account t h e  a.xial sym- /lo2 
m e t r y  of t he  b e l t s  and t h e  symmetry-relative t o  t h e  geomagnetic equator, a c ross  
section of only one-fourth of t h e  space occupied by t h e  b e l t s  can be shown here. 
Concentric c i r c l e s  are drawn a t  a d is tance  which i s  a multiple of t h e  e a r t h t s  
rad ius  R. The lower po r t ion  of t h e  sketch gives t h e  energies and fluxes of 
p a r t i c l e s  i n  t h e  regions of maximum i n t e n s i t y  of t h e  b e l t s .  

W e  note t h a t  a t  high l a t i t u d e s  (about 65'), as es tab l i shed  by Soviet re
searchers (Bibl.61), t h e  ou te r  b e l t  d ips  t o  low heights (about 200 km), wi th  t h e  
extent and i n t e n s i t y  of this b e l t  s t rongly  depending on t h e  solar a c t i v i t y  ( t h e  
i n t e n s i t y  va r i e s  by a f a c t o r  of 10 - 100). Anomalous d ips  of t h e  inner b e l t  a l s o  
have been observed (Bib1.57). 

A s  soon as a space vehic le  e n t e r s  t h e  r ad ia t ion  b e l t s ,  appreciable radia
t i o n  l e v e l s  are created i n s i d e  the  capsule which are measured by dosimeter 
whose design i s  similar t o  t h a t  of t h e  ecpipment f o r  measuring t h e  i n t e n s i t y  of 
cosmic rays,  which a l s o  p lay  a p a r t  a t  t h e  high r a d i a t i o n  levels. 

The r ad ia t ion  doses, subjec t  t o  measurement, are produced not only by 
penet ra t ion  of t h e  energy p a r t i c l e s  i n t o  t h e  capsule but a l s o  by bremsstrahlung 
and secondary p a r t i c l e s  which arise under i r r a d i a t i o n  of t h e  capsule skin.  The 
i n t e g r a l  i n t e n s i t y  of bremsstrahlung I,Mev/electron, with t o t a l  stopping of 
monoenergetic e lec t rons ,  i s  determined by t h e i r  e n e r a  I&Mev and t h e  mass of 
t h e  substance i n  conformity wi th  t h e  formula 

I, =5.77 IO-ZZE:, (1.v) 
where z i s  t h e  atomic number of t h e  element with which t h e  e lec t rons  i n t e r a c t .  

Bremsstrahlung has a continuous spectrum, sharply l imi ted  on t h e  short-wave 
end by t h e  quantity A, which, f o r  e lec t rons ,  i s  determined from t h e  r e l a t i o n  

A, -- l2 
U 
345 (i),where U i s  t h e  acce lera t ing  p o t e n t i a l  i n  v o l t s  corresponding 

t o  the  p a r t i c l e  energy. For example, a t  an e l ec t ron  energy & = 50 Kev t h e  
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quant i ty  A, 0.25 H. 
The energy peak i n  t h e  bremsstrahlung spectrum l ies  close t o  A, [corre

sponding t o  the  wavelength A,,, approximately equal t o  3/2 h, 
(Bibl.17, 58) 1 

An estimate of t h e  t o t a l  rad ia t ion  doses in s ide  a spacecraf t  with an 
aluminum skin  of 2 - 5 gm/cm2 thickness':' (Bibl.30) y i e l d s  a value from a mrad/day f o r  a f l u x  of primary cosmic rays t o  severa l  t e n s  of rad/hr i n  /10k
t h e  zone of maximum i n t e n s i t y  of t h e  inne r  b e l t  ( a t  a quiet sun). 

A t  t h e  i n t e n s i t y  maxL" of t h e  outer  b e l t  and f o r  a small thickness of t h e  
p ro tec t ive  sk in  ( l e s s  than  1.0 gm/cm2) hard e lec t rons  penetrat ing t h e  skin 
furn ish  t h e  main contr ibut ion t o  t h e  rad ia t ion  dose which reaches 29.5 rad/hr. 
A t  a g rea t e r  thickness of t h e  protect ion,  t h e  bremsstrahlung f u r n i s h e s  t h e  main 
contribution t o  t h e  dose reaching 13.8 rad/hr (Bib1.58). 

O f  g r ea t e s t  i n t e r e s t  at  present i s  an inves t iga t ion  of t h e  cor re la t ion  of 
cosmic rays and corpuscular fluxes with geophysical and s o l a r  processes, t h e i r  
e f f e c t  on t h e  crew of a spacecraf t  and on t h e  performance of various onboard 
devices, and an e luc ida t ion  of t h e i r  r o l e  i n  t h e  thermal regime and ion iza t ion  
of t h e  upper atmosphere. Toward this end, measurements are made of t h e  in tens i 
t y  of fluxes of various p a r t i c l e s ,  t h e i r  energy d i s t r i b u t i o n  i n  time and space, 
and t h e  rad ia t ion  dose in s ide  and outs ide t h e  capsule. 

Measurements on t h e  cha rac t e r i s t i c s  of cosmic rays, t o  obtain information 
on processes i n  outer  space and on t h e  s t ruc tu re  of space i t se l f ,  are a l so  of 
considerable i n t e r e s t  (Bib1.26). 

The energy range of p a r t i c l e s  subject  t o  measurement, as demonstrated, i s  
r a the r  broad (from a f e w  units t o  10'" - Id" ev). This necess i ta tes  t h e  use 
of diverse  equipment, espec ia l ly  when measuring p a r t i c l e s  of low and very high 
energies 

Section 2. General Charac te r i s t ics  of Onboard Equipment 

The onboard instrumentation of most space vehicles  launched i n  t h e  Soviet  
Union and i n  t h e  USA includes equipment f o r  measuring t h e  i n t e n s i t y  of cosmic 
rays (Bib1.27, 57, 58, and others) .  T h i s  comprises mainly gas-discharge and 
s c i n t i l l a t i o n  counters and e lec t ronic  c i r c u i t s  f o r  measuring t h e  r epe t i t i on  
rate of p a r t i c l e s  of various energies. I n  pa r t i cu la r ,  such equipment was used 
i n  the  renowned f l i g h t s  of t he  in te rp lane tary  probes "-1, Luna-& (Bibl , l3) ,  
and Marinerc:! (Bibl.47). 

The rad ia t ion  l e v e l  i n  near-earth space at  heights  of 180 - 3/+0 km was  
measured by radiometric instruments designed on t h e  same p r inc ip l e  as equipment 

$5 Here and below, Yhickness" i s  t o  meam t h e  product of t h e  geometric thickness 
mult ipl ied by t h e  densi ty  of t h e  substance. Occasionally, this quantity i s  
ca l led  "mean free path" 
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f o r  measuring cosmic r ad ia t ions  (Bibl.&, 51). This type of instrumentation was 
later used extensively i n  measurements on t h e  Cosmos satel l i te  series (Bibl.51, 
62). 

Spherical  e l e c t r o s t a t i c  analyzers of t h e  s o f t  component (from 0.1 t o  30 Kev), 
developed by V.V.Melfnikov and coworkers, w e r e  used t o  ob ta in  t h e  energy spec
trum of t h e  p a r t i c l e s  (Bib1.48). 

Measuring equipment f o r  i nves t iga t ing  cosmic r ad ia t ions  by gas-discharge /lo5 
counters ( such as Anton-302) and multichannel s c i n t i l l a t i o n  counters developed 
by Van Allen and coworkers, were  most widely used i n  t h e  USA, i n  p a r t i c u l a r  on 
t h e  Explorer s e r i e s ,  t h e  Pioneer spacecraft ,  and o the r  space vehic les  (Bib1.45,
5$, 57, 77). Magnetic spectrometers which analyzed e l ec t rons  of d i f f e r e n t  
energies ( 2  - 5 channels each) were used i n  c e r t a i n  experiments. End-window 
counters [such as Anton-312 (Bib1 .u)  1 or s c i n t i l l a t i o n  counters of various 
types (Bibl.31, 57) were  used as receivers.  

Semiconductor counters have recent ly  found g r e a t e r  use i n  onboard equipment
(Bib1.36, 77). Ionization chambers-which penni t  determination of t h e  t o t a l  
i on iza t ion  (Bib1.27) and a l s o  pulse  chambers (Bib1.77) have been used i n  c e r t a i n  
measurements. 

The composition of cosmic rays was measured by Cerenkov counters with m u l t i 
channel e l e c t r i c  c i r c u i t s .  

It should be mentioned t h a t  t h e  Cerenkov counters, which recorded a l l  
nuc le i  with a charge exceeding a prescribed value ( z  * 2, z 2 5, z 5 15, e tc . )  
were designated as i n t e g r a l  counters by t h e  authors (Bibl.41) and those  intended 
f o r  measuring t h e  nuclear spectrum by charges, which measured t h e  amplitude of 
t h e  pu lse  caused by t h e  passage of each nucleus through t h e  de tec tor ,  are ca l l ed  
d i f f e r e n t i a l  counters. I n  t h e  la t ter  case, t h e  s e l e c t i o n  of t h e  nuc le i  passing 
through a narrow s o l i d  angle was accomplished by two banks of gas-discharge 
counters connected i n t o  a coincidence c i r c u i t  (so-called cosmic-ray telescope).  
The pulse  of t h e  Cerenkov counter was recorded only when t h e  te lescope  was  
operating (Bibl.41). 

Class ica l  methods based on t h e  use of thick-walled photographic emulsions 
were a l s o  widely used i n  rocket research. Geoactive corpuscles having compara
t i v e l y  low energies were measured by semiconductor or s c i n t i l l a t i o n  counters 
w i t h  t h i n  c r y s t a l s  (Bibl.31) and by spec ia l  sof t -e lec t ron  i n d i c a t o r s  equipped 
with fluorescent screens (Bib1.32 - 36). 

The main elements of t h e  counter c i r c u i t s  are amplifier-shaping stages,  
sca l ing  f l ip - f lop  loops, and output devices of t h e  counting-rate meter type 
(CRM) or resistance-coupled adders. The e l ec t ron ic  c i r c u i t s  are usually powered 
from t h e  onboard network, i n  which s i l i c o n  s o l a r  c e l l s  are used as power sources. 
The high voltage for feeding t h e  counters i s  tapped from s torage  b a t t e r i e s  o r  
t r ans i s to r - s t ab i l i zed  transformers which, on temperature f l u c t u a t i o n s  of -20' 
t o  +5OoC, ensure a counting e r r o r  of not more t h a n  0.25% (Bibl.10). 
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Section 3 .  Charac te r i s t i c s  of t h e  Onboard Counters 1106 

Gas-discharge c y l i n d r i c a l  counters of t h e  type STS-5 or Anton-302 with a 
filament anode are most widely used i n  space vehic les .  I n  such counters, t h e  
e l e c t r i c  f i e l d  s t r eng th  E increases  with approach t o  t h e  anode i n  accordance 
with t h e  formula 

where U i s  t h e  voltage applied t o  t h e  counter, r2 and are t h e  r a d i i  of t h e  
counter casing (cathode) and filament (anode) respectively,  and r i s  t h e  dis
tance f r o m t h e  axis of t h e  counter. 

a) Counter 

Fig 2.V Wiring Diagram of a Gas-Discharge Counter ( a )  
and i t s  Equivalent Ci rcu i t  (b)  . 

T h i s  permits increas ing  t h e  ion iz ing  power of t h e  e l ec t rons  moving toward 
t h e  anode. 

The va r i a t ion  i n  voltage AU across t h e  filament of t h e  counter ( r e l a t i v e  
t o  the  cathode) wired as shown i n  Fig.2a.V, when an ion iz ing  p a r t i c l e ’ s t r i k e s  
i t s  working volume will be, i n  conformity with t h e  equivalent c i r c u i t  i n  
Fig.2b.V, 

ekNAV=-, 
CO 

(3.v) 

where k i s  t h e  gas ampl i f ica t ion  f ac to r ,  N i s  t h e  number of p a i r s  of primary 
ions ,  e i s  t h e  e l ec t ron  charge, and Coo i s  t h e  capacitance of t h e  counter. 

Calculation shows t h a t ,  for a p a r t i c l e  producing ion iza t ion  of N = lo” 
p a i r s  of i ons  i n  t h e  working volume of t h e  counter a t  k = lo” and C,, = 10 k p f ,  
t h e  quantity AU N 1.6 v, <.e., AU i s  s u f f i c i e n t l y  la rge .  

The shape of t h e  voltage pulse  of t h e  gas-discharge counter i s  determined 
by t h e  phys ica l  processes occurring i n  it. 

The p o s i t i v e  p o t e n t i a l  Uo of t h e  counter filament, corresponding t o  t h e  
operating voltage across  it, does not change i n  t h e  absence of ion iz ing  m 
9.4. 



p a r t i c l e s ,  as i s  shown i n  t h e  segment 1 - 2 (Fig.3.V), f o r  a counter wi th  a 
grounded casing. I f ,  a t  t h e  i n s t a n t  t2, a p a r t i c l e  e n t e r s  t he  counter, a dis
charge i s  i n i t i a t e d  and p e r s i s t s  t o  time t3 (approximately lo-" sec)  . The 
p o t e n t i a l  of t h e  filament by this t i m e  drops markedly, due t o  an accumulation 
of e lec t rons  which are re ta ined  t h e r e  by t h e  "sheath" of p o s i t i v e  ions.  Termina
t i o n  of t h e  discharge i s  followed by t h e  recovery s t age  ( l a s t i n g  about lo-* sec),  
s ince  t h e  ve loc i ty  of t h e  p o s i t i v e  ions  toward t h e  cathode of t h e  counter i s  
comparatively low. The leading edge of t h e  pu l se  consequently i s  s teep  and t h e  
t r a i l i n g  edge i s  extended. 

The impingement of o the r  p a r t i c l e s  a t  t h e  i n s t a n t s  t4 and t s  cause t h e  ap
pearance of similar pulses  but of lower amplitude, i f  they are separated by a 
t i m e  i n t e r v a l  commensurable with t h e  resolving (dead) t i m e  of t h e  counter T1 = 
= t d '  I n  t h i s  case, i f  this i n t e r v a l  i s  less than t h e  quantity t d ,  such as 
occurs f o r  a p a r t i c l e  en ter ing  at  t h e  i n s t a n t  t5, t h e  p a r t i c l e  w i l l  not be re
corded. T h i s  i s  due t o  t h e  f a c t  t h a t  discharge (k > 1)takes  p l ace  only when 
t h e  voltage across t h e  counter i s  not less than t h e  voltage corresponding t o  t h e  
start of t h e  gas amplification region (voltage of t h e  start of counting Ua i n  
Fig .3 .V) . 

Fig.3.V Scheme of Pulse Shaping of the.Counter. 

The t i m e  of complete recovery of t h e  fi lament p o t e n t i a l  i s  equal t o  T2 .  
If  t h e  time i n t e r v a l  between p a r t i c l e s  i s  not less than this value, t h e  ampli
tude of t h e  impulse caused by any p a r t i c l e  Will have t h e  same (nominal) value. 

The voltage pulse  en ter ing  t h e  measuring c i r c u i t  i s  taken from t h e  counter 
load Rk (see Fig.2.V). The dura t ion  of i t s  t r a i l i n g  edge i s  determined by t h e  
charging t i m e  of t h e  s t r a y  capacitance C, which inc ludes  the  self-capacitance 
of t h e  counter C,, and t h e  wiring capacitance across  t h e  r e s i s t ance  Re. To 
reduce t h e  pulse  duration, it i s  des i r ab le  t o  have a l o w  value of R&Cs. On t h e  
o ther  hand, t o  increase  t h e  amplitude of t h e  voltage pulse  t h e  r e s i s t ance  R& /lo8 
should be s u f f i c i e n t l y  la rge .  I n  wiring diagrams, t h e  r e s i s t ance  R& i s  usua l ly  
taken so t h a t  t h e  t i m e  r e so lu t ion  provided by t h e  gas-discharge counters t h e m  
se lves  does not decrease. 

The dose rate of stopping X-radiation and gamma rad ia t ion ,  produced in t h e  
casing of t h e  counter and i n  i t s  components, i s  measured by counting t h e  number 
n of pu l se s  i n  t h e  counter p e r  unit time. 
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The r e l a t i o n  between t h e  number of pu l se s  n and t h e  dose rate of r a d i a t i o n  
P ac t ing  on t h e  counter i s  found i n  t h e  following manner: 

If t h e  flux dens i ty  i s  denoted by F and t h e  area of e f f ec t ive  cross sec t ion  
of t h e  counter by s, then 

n =eFs, ( 4 . 4  

where e i s  t h e  e f fec t iveness  of t h e  counter r e l a t i v e  t o  t h e  quanta being re
corded. 

The dose rate of t h e  bremsstrahlung is  

where p i s  t h e  l i n e a r  absorption coe f f i c i en t  of quanta i n  a i r  under normal condi
t i ons ,  and E i s  t h e  quantum energy of t h e  monoenergetic f lux .  

It follows from eqs.(b.V) and (5.V) t h a t  t he  quan t i t i e s  n and P a r e  r e l a t ed  

p = - 	 p E  n. 
&S 

It i s  obvious t h a t  under loads exceeding t h e  permissible value, w i t h  respect 
t o  t h e  resolving time td,  counting e r r o r s  will occur. If t h e  ac tua l  number of 
s t a t i s t i c a l l y  d i s t r ibu ted  p a r t i c l e s  s t r i k i n g  t h e  counter i s  n l ,  then the  number 
of p a r t i c l e s  recorded by it, as follows from t h e  theory (Bibl.2),  w i l l  be n2, 
where nt 

n2 = 
1 +nit, (7.v) 

The e r r o r  of measurement, i n  this case, Will be 

The counting e r r o r s  of equipment using counters, occurring under l a r g e  
loads, f o r  example i n  t h e  r ad ia t ion  b e l t s ,  can be taken i n t o  account by a previ
ously recorded load cha rac t e r i s t i c .  For this, t h e  counter connected i n t o  the  
measuring c i r c u i t  i s  subjected t o  an ever increasing load (usua l ly  by i r r ad ia 
t i o n  from a u n i f o d y  approaching i so tope) .  

The load c h a r a c t e r i s t i c  i s  obtained i n  t h e  form of a curve of t h e  dependence 
of t h e  recorded number of p a r t i c l e s  n on t h e  number of p a r t i c l e s  ac tua l ly  ir
rad ia t ing  t h e  counter na. T h i s  curve i s  characterized by t h e  presence of a /109
sa tu ra t ion  sec t ion  which begins a t  values of n, equal t o  - counts/sec 
f o r  t h e  halogen counters used on board space vehicles (Bib1 .G) .  

Self-quenched halogen counters with a steel casing of t h e  STS-5 type have 
a working ( e f f ec t ive )  diameter of 10 1 0.1 m and a l eng th  of 100 f 1mm. To 
provide mechanical s t rength ,  t h e  t h i n  counter casing (thickness,  about 65 p or 
50 mg/cm2) i s  equipped with s t i f f e n e r s .  Calculation shows t h a t  t h e  energy neces
sary for passage of p a r t i c l e s  through t h e  casing i s  about 0.5 Mev f o r  e lec t rons  
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and about 5 Mev f o r  protons. 

The counter i s  f i l l e d  with neon, with a small addi t ion of argon and 5% 
bromine. The ra ted  operating voltage i s  400 v and t h e  start-of-counting voltage, 
300 v. The capacitance of t h e  counter i s  about 10 ppf. The resolvizg time of 
t h e  counter td i s  of t h e  order  of sec (optimal load of about 10 counts/sec). 
The service l i f e  i s  lo” counts (Bibl.4.4, 64). 

Gas-discharge counters of smaller dimensions [working length 50 m, dia
meter 10 m (Bibl.l3)1 were  used i n  t h e  instrumentation of t h e  in te rp lane tary  
probes Mars-1 and Luna-4. 

Counters of t h e  Anton-302 type are a l s o  made of s t a i n l e s s  steel, but  are 
l a r g e r  [filament length 101.6 m, ins ide  diameter 19.8 nun (Bib1.65) 1 The wall 
thickness va r i e s  from 0.5 t o  1.25 mm (Bib1.77). With a shielding l aye r  of mag
nesium (265 mg/cm2) and steel (400 mg/cm”), as was used i n  t h e  instrumentation 
of Explorer-XI1 (Bibl.46), t h e  counters d i r e c t l y  recorded e lec t rons  with an 
energy of at  least 1.6 Mev and protons with an energy of at  least 20 MeV. 
Bremsstrahlung was recorded with a fow eff ic iency.  

The eff ic iency of t h e  Anton-302 counters i n s t a l l e d  on Explorer-XII, accord
ing t o  inves t iga t ions  by OfBrian, Van Allen, Iaughlin, and Frank (Bibl.46) i s  
characterized by t h e  curve shown i n  Fig.4.V. The graph gives t h e  var ia t ion  i n  
the  r a t i o  of t h e  counting rate N counts/second t o  t h e  f l u x  densi ty  from a l l  di
rec t ions  of monoenergetic e lec t rons  F cm-2 e sec-’ as a funct ion of t h e  e lec t ron  
energy E,. The curve i n  Fig.4.V shows t h a t  t h e  eff ic iency of gas-discharge 
counters i s  p r a c t i c a l l y  100% for p a r t i c l e s  penetrat ing i n t o  t h e  casing. Accord
ingly,  halogen counters are used mainly f o r  counting t h e  t o t a l  number of par
t i c l e s .  The counters a lso record (although at  low eff ic iency)  those p a r t i c l e s  
which do Lot pene t ra te  i n s ide  but  produce X-radiation on decelerat ion within t h e  
walls. 

S c i n t i l l a t i o n  counters operate on t h e  p r inc ip l e  of recording l i g h t  s c i n t i l 
l a t i o n s  produced on in t e rac t ion  of t h e  p a r t i c l e s  w i t h  a phosphor. The counter 
cons t i tu tes  a system consis t ing of a c rys t a l ,  l i g h t  conductor, and photomulti
p l i e r  (PM) receiving t h e  rad ia t ion  of t he  s c i n t i l l a t i o n s .  

The s c i n t i l l a t o r s  i n  present  use have a very short  glow time sec and 
less). The t r a n s i t  of t h e  pulse  i n  t h e  m u l t i p l i e r  i s  of t h e  same order, so t h a t  
t he  resolving power of s c i n t i l l a t i o n  counters i s  much higher than t h a t  of /110
gas-discharge counters. The p r a c t i c a l  counting rate i s  l imi ted  only by t h e  re
solving power of t h e  e lec t ronic  recording c i r c u i t s .  

A n  extremely important cha rac t e r i s t i c  of s c i n t i l l a t i o n  counters i s  t h e  
propor t iona l i ty  between t h e  pulse  height and t h e  energy l i b e r a t i o n  i n  t h e  c rys ta l .  
T h i s  forms t h e  basis f o r  t h e  separat ion ( se l ec t ion )  of p a r t i c l e s  by energy, i n  
multichannel instruments where each channel i s  tuned t o  a c e r t a i n  operating 
threshold.  A deviat ion from propor t iona l i ty  between t h e  l i g h t  y i e l d  and energy 
released by t h e  p a r t i c l e  i n  t h e  s c i n t i l l a t o r  has been observed only f o r  p a r t i c l e s  
with low energies. 

S c i n t i l l a t i o n  counters record fast ionizing p a r t i c l e s  (e lectrons,  a
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p a r t i c l e s ,  protons, e t c  .) and a l s o  electromagnetic r ad ia t ion  whose quantum 
energy i n  t h e  s c i n t i l l a t o r ,  owing t o  t h e  Compton e f f ec t  and t o  photoeffects,  i s  
converted i n t o  energy of secondary e lec t rons ,  producing ion iza t ion  and excita
t i o n  of atoms and molecules of t h e  s c i n t i l l a t o r  material. The s p e c t r a l  dis- / I l l  
t r i b u t i o n  i n t e n s i t y  and t h e  dura t ion  of s c i n t i l l a t i o n  of t h e  excited atoms differ 
f o r  d i f f e r e n t  substances. Therefore, t h e  s c i n t i l l a t o r  substance should be se
lec t ed  with respect t o  i t s  cha rac t e r i s t i c s ,  f o r  optimum so lu t ion  of t h e  problem 
i n  question. 
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of Gas-Discharge Counter f o r  Electrons.  

A most important c h a r a c t e r i s t i c  of s c i n t i l l a t o r s  i s  t h e  l i g h t  y i e ld  f o r  
conversion e f f ic iency  ?I, charac te r iz ing  t h e  conversion of energy absorbed i n  t h e  
s c i n t i l l a t o r  AE i n t o  l i g h t  energy 

where a i s  t h e  mean number of l i g h t  quanta emitted p e r  s c i n t i l l a t i o n ,  and b i s  
a coe f f i c i en t  allowing f o r  t h e  l o s s  of l i g h t  along t h e  pa th  t o  t h e  photocathode 
of t h e  photomultiplier.  

Occasionally, t h e  r e l a t i v e  s c i n t i l l a t i o n  e f f i c i ency  v r e l  i s  used, which i s  
determined by comparison with t h e  s c i n t i l l a t i o n  e f f i c i ency  of a standard, 

r l r e l  = S ll T 100%. 

The shape of t h e  s c i n t i l l a t i o n  pu l se  i s  characterized by a rap id  rise of 
t h e  leading edge and a comparatively slow exponential drop. Therefore, a time 
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constant [a t tenuat ion  constant)  7, defined as t h e  t i m e  during which t h e  maxjmum 
pulse  peak decreases e times (or by 63%), i s  used f o r  t h e  c h a r a c t e r i s t i c  of t h e  
s c i n t i l l a t i o n  (pulse)  duration. The luminous i n t e n s i t y  I, observed after a 
lapse  of t i m e  t from t h e  start, i s  thus  determined by an exponential re la t ion
ship of t h e  type 

1 

I =&e , (lo.v) 
where I, i s  t h e  maximum luminous i n t e n s i t y .  

The photomultiplier of t h e  s c i n t i l l a t i o n  counter should be matched both with 
t h e  s c i n t i l l a t o r  and with t h e  measuring c i r c u i t  and should satisfy t h e  s p e c i f i c  
demands of operation onboard space vehicles.  

A highly important parameter characterizing t h e  p o s s i b i l i t y  of matching t h e  
PM with t h e  s c i n t i l l a t o r  i s  t h e  s p e c t r a l  quantum ef f ic iency  of i t s  photocathode. 
T h i s  parameter, however, va r i e s  g r e a t l y  from specimen t o  specimen so t h a t ,  i n  
p rac t i ce ,  t h e  i n t e g r a l  s e n s i t i v i t y  of t h e  PM re l a t ed  with t h e  quantum e f f i c i ency  
by a l i n e a r  dependence i s  generally-used (Bibl.49). 

The quantum e f f i c i ency  of antimony-cesium [SbCs) , oqgen-antimony-cesium 
( SbCsO) and t h e  recent ly  developed multi-alkali  [SbNaKCs) photocathodes 
(Bibl.49) i s  shown i n  Fig.5.V. The i n t e g r a l  s e n s i t i v i t y  of t h e  PM with La2 
these  photocathodes i s  ind ica ted  on t h e  curves. Figure 5.V i nd ica t e s  t h a t  t h e  
m a x i m u m  quantum e f f i c i ency  of antimony-cesium photocathodes does not exceed 10% 
on t h e  average. For t h e  b e s t  specimens, it reaches 25 - 30%. Therefore, a 
spec ia l  s e l ec t ion  of m u l t i p l i e r s  for s c i n t i l l a t o r s  i s  usua l ly  made. 
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Fig.5.V @antun Efficiency of t h e  Photomultiplier Photocathodes. 

Furthermore, f o r  t h e  PM used i n  s c i n t i l l a t i o n  counters, it is  necessary t o  
have l i n e a r i t y  of t h e  l i g h t  c h a r a c t e r i s t i c  w i th in  t h e  limits of v a r i a t i o n  i n  
t h e  l i g h t  f l u  of t h e  s c i n t i l l a t o r .  Deviations of t h e  l i g h t  c h a r a c t e r i s t i c  of 
t h e  PM from l i n e a r  i n  t h e  reg ion  of low l i g h t  fl'uxes are due t o  t h e  effect of 
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t h e  dark current of t h e  m u l t i p l i e r  and, i n  t h e  presence of  l a r g e  l i g h t  f luxes ,  
t o  "fatigue" of t h e  emitters and t o  t h e  appearance of a space charge i n  t h e  
region of t h e  last cascades of t h e  multiplying system, which cause defocusing of 
t h e  e l ec t ron  beam. Therefore, t h e  region of l i n e a r i t y  of t h e  l i g h t  character
i s t i c  e s s e n t i a l l y  depends on t h e  magnitude and d i s t r i b u t i o n  of t h e  feed voltage. 
For p r a c t i c a l  purposes, it i s  necessary t o  ensure l i n e a r i t y  of t h e  c h a r a c t e r i s t i c  
i n  t h e  region of l i g h t  f l uxes  from approximately t o  lo-* lumen (Bibl.70). 

The noise  level of t h e  PM and t h e  parameters of t h e  s c i n t i l l a t o r  determine 
t h e  lower limit of energies and i n t e n s i t i e s  of t h e  r a d i a t i o n  recorded by t h e  
counter. The signal-to-noise r a t i o  a t  t h e  output of t h e  PM i s  determined not  
only by i t s  design parameters bu t  a l s o  by t h e  operating temperature on which /113
depends t h e  dark current,  t h e  passband of t h e  measuring c i r c u i t ,  and t h e  e f f e c t  
of r ad ia t ions  on t h e  dynodes and t h e  casing of t h e  PM. 

The amplitude of t h e  output pu lse  (Fig.6.V), formed a t  t h e  s c i n t i l l a t i o n  
counter, i s  determined by t h e  counter parameters and by t h e  elements of t h e  
Wiring c i r c u i t  - t h e  load r e s i s t ance  RJ and t h e  stray c i r c u i t  capacitance C s .  

Fig.6.V W i r i n g  Diagram of t h e  S c i n t i l l a t i o n  Counter. 

An ana lys i s  (Bibl.49) shows t h a t  t h e  m a 3 d "  value of t h e  s i g n a l  at  t h e  
output of t h e  s c i n t i l l a t i o n  counter Wi l l  occur at  an optimum value of t h e  load 
res i s tance  determined from t h e  formula RJC, = 7, where 7 i s  t h e  a t tenuat ion  con
s t a n t  of t h e  s c i n t i l l a t o r .  In this case, a time change i n  pulse  height i s  de
scribed by t h e  equation 

(11.v) 

where Q i s  t h e  anode charge occurring a t  t h e  in i t ia l  i n s t a n t  (t = 0) at  which 
t h e  luminescence of t h e  s c i n t i l l a t o r  s t r i k e s  t h e  PM. 

The maximum pulse  height i s  

umar= 1 Q - MiSNo (12.v) 
e c* cs ' 

where e i s  t h e  e l ec t ron  charge, M i s  t h e  ampl i f ica t ion  f a c t o r  of t h e  PM, i s  
t h e  m e a n  cpantum e f f i c i ency  of t h e  photocathode of t h e  PM, I3 is  t h e  photon col
l e c t i o n  coefficient a t  t h e  photocathode, and No is  t h e  number of photons emitted 
by t h e  s c i n t i l l a t o r  a t  t h e  in i t ia l  i n s t a n t  (t = 0). 
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As follows from t h e  equations and from a qua l i t a t ive  analysis ,  t h e  design 
of t h e  s c i n t i l l a t i o n  counter and t h e  supply regime of t h e  F'M should provide f o r  
maximum co l lec t ion  of photons and electrons,  i.e., f o r  a maximum charge Q at  i t s  
anode. The shape of t h e  pulses  of t h e  counter i s  determined pr imari ly  by t h e  
t i m e  constant T of t h e  s c i n t i l l a t o r .  E& changing t h e  amplif icat ion f a c t o r  of 
t h e  PM and t h e  parameters of t h e  anode c i r c u i t ,  it i s  poss ib le  t o  vary both t h e  
amplitude and t h e  durat ion of t h e  edge of t h e  output pu lse  of t h e  counter, 
matching it t o  t h e  measuring program and t o  t h e  recording e lec t ronic  c i r c u i t .  

I n  equipment f o r  measuring t h e  i n t e n s i t y  of cosmic rays and a l s o  t h e  radia
t i o n  doses on board space vehicles,  sodium iodide c r y s t a l s  N a I ,  ac t iva ted  with 
thal l ium N a I  (Tl) ,  and cesium iodide with t h e  same a c t i v a t o r  C s I  ( T I )  are used 
as s c i n t i l l a t o r s .  

The s c i n t i l l a t o r  N a I  ( T l )  has a r ad ia t ion  spectrum i n  t h e  region from 0.30 
t o  0.55 p with a peak of about 0.45 p, a time constant 7 = 2.5 X sec, /ulc
and a conversion e f f ic iency  f o r  e lec t rons  of about S;%. The output amplitude of 
s c i n t i l l a t i o n s  i s  l i n e a r  f o r  e lec t rpns  with an energy of 1- 6 MeV, deuterons, 
and protons of a l l  recordable energies.  The c r y s t a l  i s  ab le  t o  record CY
p a r t i c l e s ;  however, i n  this case t h e  r e l a t i o n  between t h e  s c i n t i l l a t i o n  ampli
tude and the  energy of t h e  p a r t i c l e s  i s  nonlinear3up t o  a p a r t i c l e  energy of 
10 MeV. The densi ty  of t h e  c r y s t a l  i s  3.67 gm/cm , and t h e  m e l t i n g  point  i s  
6 5 1 O C .  A shortcoming of this s c i n t i l l a t o r  i s  i t s  hygroscopicity, which causes 
i t  t o  become turb id  i n  t i m e  and thus become useless.  Therefore, N a I  ( T l )  i s  
used f o r  ins ide  counters s i t ua t ed  i n  t h e  pressurized capsule of spacecraft ,  wi th  
a low moisture content of t h e  f i l l i n g  gas (B ib l .51 ) .  

Moisture-resistant c r y s t a l s  C s I  ( T l )  having, however, a lower conversion 
eff ic iency [TIrel = 0.3 with respect t o  N a I  (Tl)  taken as t h e  standard] are used 
as s c i n t i l l a t o r s  f o r  outs ide counters. The durat ion of luminescence i s  7 
N sec, and i t s  spectrum i s  located within 0.4. - 0.7 p a t  a h u m of about 
0.6 IJ. (Bibl.49, 51). 

Photomultipliers with flat-end photocathodes are used as converters. A s  a 
typ ica l  example, we are giving t h e  main parameters of a PM-35 mul t ip l i e r  used 
i n  combination with t h e  NaI (Tl)  c rys t a l .  The diameter of t h e  container i s  
34 k 0.6 mm a t  a photocathode diameter of 30 f 1". The region of spec t r a l  
s e n s i t i v i t y  i s  from 0.3 t o  0.6 p, with a peak near 0.4 p. The s e n s i t i v i t y  of 
t h e  photocathode ( i n t e g r a l )  i s  20 p amp/lumen. The photocathode and dynodes 
(eight U-shaped dynodes) have antimony-cesium emitt ing surfaces.  The operating 
voltage is  700 - 1750 v. The i n t e g r a l  s e n s i t i v i t y  i s  1- 30 amp/lumen, at an 
amplif icat ion f a c t o r  of lo5 - 10" a dark current  of lo-' p amp, and an output 
capacitance of 3 ppf (Bib1.23, 701. 

A n  important condition f o r  t h e  high-quality and r e l i a b l e  operation of a 
s c i n t i l l a t i o n  counter i s  i t s  e f f i c i e n t  design. The bas ic  design f ea tu res  of 
s c i n t i l l a t i o n  counters are t h e  e f f e c t i v e  co l l ec t ion  of t h e  l i g h t  of t h e  s c i n t i l 
l a t i o n s  a t  t h e  photocathode of t h e  PM, t i gh tness  f o r  extraneous l i g h t ,  and suf
f i c i e n t  res i s tance  t o  l i n e a r  and vibratory stresses. 

S c i n t i l l a t i o n  counters with a N a I  ( T l )  c r y s t a l  and a PM-35 photomultiplier 
i n s t a l l e d  in s ide  t h e  capsule were enclosed i n  an aluminum casing with a wall 
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thickness of about 0.5 mm (Bibl.15). The c r y s t a l  was clamped t o  t h e  end of t h e  
PM by t h e  casing cover over a rubber gasket. The free space was f i l l e d  wi th  
mineral o i l  t o  ensure good o p t i c a l  contact.  The i n s i d e  sur face  of t h e  cover was  
coated with magnesium oxide r e f l e c t i n g  98% of t h e  l i g h t .  

By recording a l l  cases of energy l i b e r a t i o n  of more than  5 Mev i n  a c r y s t a l  
of about 40 mn thickness (Bibl.6 - 16, 59 - 62) it was poss ib l e  t o  count p rac t i 
c a l l y  a l l  high-energy p a r t i c l e s  (an  energy of 5 MeV i s  l i b e r a t e d  i f  t h e  /115
r e l a t i v i s t i c  p a r t i c l e  covers a pa th  of at least 10 mn i n  the  c rys t a l .  

The design of counters i n s t a l l e d  outside t h e  capsules took i n t o  account t h e  
necess i ty  of recording less energetic p a r t i c l e s  and quanta. The cesium iodide  
c r y s t a l  (1).(Fig.7.V) was cemented or t i g h t l y  ground i n t o  t h e  end (3) of t h e  box 
of t h e  PM. The c r y s t a l  was pro tec ted  from extraneous l i g h t  by a t h i n  aluminum 
f o i l  (2) .  Its diameter was 30 and height 2.2 mm (Bibl.60). The dimensions of 
t h e  main elements of t h e  counter are shown i n  t h e  diagram. 

Fig.7.V S t r u c t u r a l  Elements of t h e  S c i n t i l l a t i o n  Counter. 

I n  t h e  equipment of t h e  second satel l i te  (Bibl.60), t h e  c r y s t a l  of t h e  
counter was protected,  w5t%n t h e  Emits of a s o l i d  angle of 0.15 of 4m, by an 
aluminum coating of 2 mg/cm thickness.  The counter was ab le  t o  record X-radia
t i o n  a t  an e f f i c i ency  c lose  t o  unity, gama-radiation a t  a low efficiency, 
e lec t rons  with an energy of more than 0.3 Mev, and protons with an energy of 
more than 1MeV. 

The design of t h e  s c i n t i l l a t i o n  counters i n  t h e  USA (Bibl.31, 77) i s  v i r tu
a l l y  t h e  same as our own designs described above. 

Wide use i s  made of t h e  p o s s i b i l i t i e s  of measuring t h e  spectrum of recorded 
p a r t i c l e s  by varying t h e  type of s c i n t i l l a t o r ,  i t s  thickness,  and threshold 
amplitude recording levels. 

To i l l u s t r a t e  t h e  poin t ,  Fig.8.V, based on d a t a  by Ludwig and McDonald 
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(Bib1.77), shows thezcurve of energy l i b e r a t i o n  by protons 4 i n  a C s I  ( T l )  
c r y s t a l  of 0.5 gm/cm thickness (about 1mm), absorbed ( A )  and transmitted (B) .  
The diagram ind ica t e s  t h e  l e v e l s  of recording amplitudes (1- 8) i n  t h e  equip
ment of t h e  Explorer-XI1 satell i te.  

The s i l i c o n  (n - p )  counter comprises a small s i l i c o n  p l a t e  on whose sur face  
a ( n  - p )  junction i s  formed; f o r  this reason, they are a l s o  known as surface-
b a r r i e r  counters. The space-charge region of t h e  ( n  - p )  junction i s  t h e  
s e n s i t i v e  l a y e r  of t h e  counter. On switching t h e  counter i n  a b a r r i e r  d i r e c t i o n  
(Fig.9.V), when t h e  p l u s  te rmina l  of t h e  source i s  applied t o  t h e  n-silicon, /U6 
t h e  s e n s i t i v e  l a y e r  of t h e  junction broadens. Its thickness f o r  our own model, 
5 x 5 mm i n  cross sec t ion ,  i s  about 60 p at an  operating voltage of 40 v 
(Bib1.37). The s i l i c o n  counters developed i n  t h e  USA have s imi l a r  parameters 
(Bib1.55). 

0.I Itjlllllllll 1 1 1 1 1 1 1 1 1  I I I I , , , ,  I I I I , ,  
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F’ig.8.V Energy Liberation of Protons i n  a Cesium Iodide 
Crystal of 1 m m  Thickness, and Amplitude Recording Levels 

of P a r t i c l e s  with Different Energy =beration. 

The passage of t h e  cur ren t  c a r r i e r s ,  produced by t h e  ion iz ing  p a r t i c l e ,  
through t h e  energy barrier i s  equivalent t o  t h e  current pu lse  through t h e  
( n  - p )  junction w i t h  a voltage amplitude at  t h e  output of 

eNA U = T ,  

where  N i s  t h e  number of electron-hole p a i r s  formed by t h e  p a r t i c l e ,  C, i s  t h e  
s t r a y  capacitance of t h e  wiring and of t h e  ( n  - p )  junction a t  which t h e  charges 
released by t h e  p a r t i c l e  are co l lec ted .  

T h i s  voltage pulse  AU i s  recorded by t h e  counting c i r c u i t .  The t i m e  during 
which t h e  charge a t  t h e  capac i tor  C, i s  co l lec ted  i s  about lo-’ sec f o r  t h e  /117 
counters used [ t h e  capacitance of t h e  counter C,, = 400 ppf cmW2 a t  a voltage 
of U = 30 v (Bib1.65)l. This t i m e  determines t h e  dura t ion  of t h e  leading edge 
of t h e  pulse.  The duration of t h e  t r a i l i n g  edge depends on t h e  t h e  of diffu
s ion  of t h e  minority c a r r i e r s  ti, from t h e  po in t  of t h e i r  formation t o  t h e  ( n  - p)  
junction as well as on t h e  time constant of RLC, of t h e  c i r c u i t .  

The quantity determines t h e  time of accumulation of t h e  charges at  t h e  



capacitor of t h e  ( n  - p )  junction. T h i s  i s  r e l a t e d  wi th  t h e  thickness of t h e  
s e n s i t i v e  l a y e r  d and t h e  d i f fus ion  coe f f i c i en t  of t h e  c a r r i e r s  D by t h e  equation 

dzto  =
2 0 .  

It i s  obvious t h a t  t h e  accumulation time to should be appreciably less than 
t h e  l i f e t i m e ’ o f  t h e  c a r r i e r s .  

n-Si p-si 
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t p u t  t o  

Fig.9.V Wiring Diagram of ( n  - p )  Counter. 

The quantity d, i n  tu rn ,  depends upon t h e  r e s i s t i v i t y  of t h e  P region P 
and on t h e  reverse b i a s  U (Bib1.55). 

If t h e  pa th  of t h e  p a r t i c l e  i n  t h e  counter does not  extend beyond t h e  
limits of t h e  s e n s i t i v e  l a y e r  d, t h e  pulse  amplitude w i l l  be propor t iona l  w i t h  
a high accuracy t o  t h e  energy of t h e  p a r t i c l e  s ince  it i s  propor t iona l  t o  iorii
za t ion  i n  t h e  space-charge region of t h e  counter. 

S i l i c o n  de tec to r s  with t h e  above-indicated th ickness  of t h e  s e n s i t i v e  l a y e r  
(d = 60 IJ.)have l i n e a r i t y  when recording a -pa r t i c l e s  with an energy up t o  

, 10 Mev and protons up t o  2.5 Mev (Bib1.37). 

Inves t iga t ions  (Bib1.55) have shown t h a t ,  f o r  each ion iz ing  event, a proton 
lo ses  on t h e  average 3.5 ev i n  s i l i c o n  [an e lec t ron ,  about 1ev (Bibl.80)],
whereas approximately one order of magnitude more e n e r a  i s  required p e r  ioniz
ing  event of a gas. Therefore, s i l i c o n  counters are much more s e n s i t i v e  (effec
t i v e )  de t ec to r s  than gas-discharge counters. 

Semiconductor de t ec to r s  f o r  i nves t iga t ing  cosmic rad ia t ion ,  develaped f o r  
example by P h i l l i u s  and McIlwein (Bib1.77), are characterized by an energy 
l i b e r a t i o n  E3 which varies with any va r i a t ion  i n  t h e  proton energy E, as shown 
inFig.10a.V. The diagram ind ica t e s  t h e  recording thresholds f o r  protons with 
respect t o  t h e  channels I, 11, and 111. 

Of i n t e r e s t  i s  t h e  use of s i l i c o n  ( n  - p )  de t ec to r s  i n  t h e  instrumentation 
of t h e  Telstar satel l i te  [ Ju ly  10, 1962 (Bibl.80)l. Here, i n  addi t ion  t o  t h e  
recording of protons of various energies (above 50 MeV, i n  t h e  region of 
26 - 34. Mev and 2.4 - 25 MeV) t h e  s i l i c o n  de tec to r s  were used t o  record t h e  
s p e c t r a l  d i s t r i b u t i o n  of e lec t rons  ( i n  t h e  range from 200 Kev t o  1Mev by fou r  
channels). To limit t h e  angle of t h e  f i e l d  of view, t h e  counters were placed 

-.- ..-.-- ._.......... .... ... . ........._. .I_. ,, 



i n  massive casings w i t h  receiving apertures .  The se lec t ion  of p a r t i c l e s  by 
energy was accomplished with t h e  use of m e t a l  and magnetic filters, by connect
ing  t h e  discriminators i n t o  t h e  measuring c i r c u i t ,  and by se l ec t ing  t h e  feed 
voltage of t h e  detectors .  The e lec t ron  e f f ic iency  of t h e  s i l i c o n  de tec tor  for 
1- 4 channels i s  i l l u s t r a t e d  i n  Fig.1Ob.V. The diagram demonstrates t ha t ,  /ll8 
even a t  an electron energy g rea t ly  exceeding t h e  energy corresponding t o  t h e  
recording maximum i n  a given channel, t h e  de tec tor  w i l l  remain s u f f i c i e n t l y  
sens i t ive .  
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Fig.1O.V Proton ( a )  and Electron (b) Efficiency 
of t h e  ( n  - p )  Counter. 

Invest igat ions as t o  t h e  e f fec t  of high-energy protons on surface-barrier 
s i l i c o n  de tec tors  (Bibl.5) showed t h a t  t h e i r  p roper t ies  are re ta ined  at  doses 
q t o  Id’ - Id”protons which ensures r e l i a b l e  operat ion for about 
10“ sec i n  the  zone of maximum i n t e n s i t y  of t h e  inner r ad ia t ion  b e l t .  

The onboard instrumentation of t h e  American spacecraf t  employed semicon
ductor p a r t i c l e  de tec tors  made of cadmium su l f ide  CdS, which changes i t s  con
duct iv i ty  under t h e  e f f e c t  of i r r a d i a t i o n  i n  proportion t o  t h e  release of 1119 
energy i n  t h e  volume of t h e  substance (Bib1.57, 77). The onboard equipment of 
t h e  Explorer X I 1  used cadmium su l f ide  detectors ,  f o r  example, t o  record e lec t rons  
with an energy with more than 0.5 - 4 Mev and protons with an energy of at  least 
20 - 4.0 Mev [ i n  combination with various sh i e lds  (Bib1.46)I. 



Cerenkov counters will be b r i e f l y  examined i n  conclusion. 

One of t h e  most important features of Cerenkov r ad ia t ion  i s  i t s  d i r e c t i v i t y  
along t h e  movement of t h e  p a r t i c l e .  The theory of t h e  phenomenon (Bib1.22, 68) 
shows t h a t  r ad ia t ion  i s  concentrated i n  a cone (Fig.ll.V)$ half  of whose aper ture  
angle 8 i s  determined by t h e  r a t i o  of t h e  speed of l i g h t  i n  a given medium c1 t o  
t h e  speed of t h e  p a r t i c l e  i n  t h e  same medium v: 

where co i s  t h e  ve loc i ty  of l i g h t  i n  vacuum, B = 

meter, and n i s  t h e  r e f r a c t i v e  index of t he  medium. 

i s  a dimensionless para-
C O  

Fig.1l.V Schematic of Propagation of 
Cerenkov Radiation. 

From eq.(lS.V), t h e  following conclusions on t h e  p r o p e d i e s  of Cerenkov 
counters can be derived: 

1. For each substance (counter) t he re  i s . a  c r i t i c a l  p a r t i c l e  speed vmin 
below which t h e  rad ia t ion  cone cont rac ts  i n t o  a l i n e  (e = 0). I n  t h a t  case, 

rad ia t ion  i s  absent and Vmin  = @ m i n k  = n1 co = c1 

2. For each substance the re  a l s o  exists a maximum aperture  angle of 
Cerenkov r ad ia t ion  0, ax , corresponding t o  u l t r a r e l a t i v i s t i c  p a r t i c l e s  v N co, 

i.e., cos-1 -.	1 
n 

3 .  The occurence of Cerenkov r ad ia t ion  i n  a substance takes  place when t h e  
condition I$ 2 1or n > l i s  s a t i s f i e d ,  s ince  B 9 1always. T h i s  m e a n s  t h a t  
short-wave rays f o r  which n < 1, f o r  example X-rays, cannot form p a r t  of t h e  
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compcsition of Cerenkov rad ia t ion .  The s p e c t r a l  region of r ad ia t ion  i s  not 
l imi ted  a t  t h e  long-wave end. 

Only de tec tors  whose Cerenkov r ad ia t ion  maxi” l i e s  i n  the  v i s i b l e  region 
sensed by t h e  PM have found p r a c t i c a l  use i n  t h e  equipment under consideration. 
From t h e  theory of t h e  phenomenon (Bib1.22), we der ive  t h e  following expres- /120
s ion  f o r  t h e  i n t e n s i t y  of Cerenkov r ad ia t ion  expressed i n  terms of t h e  number of 
photons N i n  t h e  wavelength range from AI t o  Az, 

(16.V) 


where h i s  Planck’s constant,  z i s  t h e  atomic number of t h e  element, e i s  t h e  
elementary charge, and Lis t h e  length  of pa th  of t h e  p a r t i c l e  i n  t h e  substance. 

Consequently, by measuring t h e  i n t e n s i t y  of Cerenkov r ad ia t ion  i n  t h e  
v i s i b l e  spectrum region, it i s  poss ib le  t o  determine t h e  atomic number of t h e  
element z i f  t h e  pa th  of t h e  p a r t i c l e s  i n  t h e  substance of t h e  de tec tor  i s  con
s t an t ,  L = const. T h i s  forms t h e  basis f o r  t h e  use of Cerenkov counters i n  ana
lyzing t h e  composition of cosmic rays. The pu l se  amplitude of t h e  counter, 
which comprises a system of de tec tors  and a photomultiplier,  according t o  
eq.(16.V) i s  proport ional  t o  t h e  square of t h e  p a r t i c l e  charge (ze)” . 

The duration of t h e  f l a s h  of Cerenkov r ad ia t ion  i s  determined by t h e  
t r a n s i t  t i m e  of t h e  p a r t i c l e  through t h e  detector ,  i.e., by t h e  thickness of t h e  
de tec tor .  T h i s  can e a s i l y  be reduced t o  lo-’’ - sec;  however, t he  com
pa ra t ive ly  shor t  resolving t i m e  of modern PM - lo--’ sec)  does not penni t  
complete r ea l i za t ion  of t h e  p o s s i b i l i t y  of a rap id  count of p a r t i c l e s  by means 
of such counters. A s  a result  t h e  dead time td of t h e  conventional Cerenkov 
counters i s  a t  l e a s t  lo--’ sec  (Bib1.22). 

The Cerenkov counter i s  connected i n t o  t h e  measuring c i r c u i t  i n  t h e  same 
manner as a s c i n t i l l a t i o n  counter. Plexiglas  (polymethylmethacrylate r e s in )  
which has a number of valuable proper t ies  [ l a rge  r e f r a c t i v e  index, low l i g h t  
a t tenuat ion,  absence of fluorescence,  s t a b i l i t y  of phys ica l  and chemical proper
t ies,  and ease of handling (Bib1.25)], i s  used as t h e  de t ec to r  i n  Cerenkov 
counters f o r  spacecraf t .  

The r e f r ac t ive  index of P lex ig las  i n  t h e  visible region i s  n = 1.50, which 

Idetermines t h e  normal speed of t h e  recorded p a r t i c l e s  V m i n  = 1.5co = 0.7 ~0 = 
200,000 km/sec. 

We note t h a t  a l l  l i q u i d s  and s o l i d s  have values of n f o r  t h e  visible region 
from 1.3 t o  1.8, which determines t h e  m i n i m u m  speed vminof p a r t i c l e s  recorded 
wi th  respect  t o  Cerenkov r ad ia t ion  (from 0.56 co t o  0.77 c0).  The threshold 
energies  of p a r t i c l e s  having a d i f f e ren t  mass can be determined over t h e  known 
value of vmi,. When using a Plex ig las  de tec tor ,  t hese  energies  w i l l  be E, 

0.2 Mev f o r  e lectrons,  E, = 300 Mev f o r  protons,  Ea 1Mev f o r  a-par t ic les ,  
and Ew = 30 - 40 Mev f o r  IT-mesons and p-mesons . 



A Cerenkov counter with a P lex ig las  d e t e c t o r  can a l s o  be used f o r  recording 
y-quanta and neutrons wi th  energy of 400 - 900 Mev ( i n  this case secondary 1121 
e lec t rons  are t h e  r ad ia t ion  exc i t a t ion  agents).  The e f f ic iency  of recording 
neutrons i s  comparatively high, being 1- 2% (Bib1.22). 

The m a x i ”  ape r tu re  of tne rad ia t ion  cone i n  P lex ig las  f o r  s ing ly  charged 
p a r t i c l e s  i s  e , , ,  = 52’. The charac te r  of t h e  dependence 8 = f (E)  i s  such t h a t ,  
at low energies of t h e  p a r t i c l e s  E c lose  t o  t h e  recording threshold with respec t  
t o  Cerenkov rad ia t ion ,  t h e  value of t h e  angle 8 varies rap id ly  w h i l e ,  a t  l a r g e  
energies, it va r i e s  slowly. Thus, f o r  e l ec t rons  wi th  an energy E, = 10 Mev t h e  
angle will be 8 = 52’, f o r  E, = 1MeV, 8 - 45’, and f o r  E, = 0.2 Mev, 8 = 0. 

The l i g h t  y i e l d  -	dN as follows from eq.(l6.V) depends on t h e  angle 8,
dL ’ 

being propor t iona l  t o  t h e  quantity (1- cos28), For example, f o r  e lec t rons  wi th  
an energy of E, = 1Mev i n  t h e  s e n s i t i v i t y  range of t h e  antimony-cesium photo
cathode (0.3 - 0.6 p) t h e  l i g h t  y i e ld  i s  about 250 photons p e r  centimeter of 
path. 

Any s ingly  charged p a r t i c l e  z = 1(elec t ron ,  meson, proton) produces i n  
P lex ig las  a m a x i ”  number of quanta N,,, = 270 cm-l (Bib1.25). The transmis
s ion  coe f f i c i en t  of P lex ig las  i n  t h e  v i s i b l e  region i s  about 90%. Consequently, 
a s ingly  charged p a r t i c l e  on a pa th  equal t o  26 m [usua l  thickness of a de
t e c t o r  (Bib1.25, 43)l causes t h e  appearance of a l i g h t  f l a s h  consisting of ap
proximately 700 photons. Taking t h e  e f f i c i ency  of t h e  photocathode 7 = 5% i n t o  
consideration, approximately 35 e lec t rons  will be emitted from t h e  photocathode 
i n  this case which, a t  an  amplification f a c t o r  of t h e  photomultiplier M = lo” 
and at an output capacitance C, = 10 ppf, w i l l  produce a voltage pulse  with an 

=amplitude equal t o  AU = lo” 35 1*6 lo250 mv. I n  p rac t i ce ,  t h e  
10-1 

amplitude at  t h e  counter output i s  somewhat less, s ince  t h e r e  i s  a c e r t a i n  l o s s  
of l i g h t  quanta and e lec t rons .  Therefore, it i s  necessary t o  ensure optimum 
l i g h t  gathering power of t h e  de t ec to r  i n  designing t h e  PM and a se l ec t ion  of 
feed conditions t h a t  permits measuring t h e  lowest poss ib l e  luminous f luxes .  

I n  design, t h e  Cerenkov counter i s  a P lex ig l a s  de t ec to r  cemented t o  t h e  end 
of t h e  box of t h e  PM and placed i n  a l i gh t - t i gh t  metal casing. 

It should be noted t h a t  a Cerenkov de tec to r  of P lex ig las  cannot be made 
very l a rge ,  because of t h e  f a c t  t h a t ,  as soon as t h e  pa th  of t h e  nuc le i  exceeds 
40 m, t h e  heavy nuc le i  are s p l i t  i n t o  l i g h t  nuc le i  which can be recorded, thus  
d i s t o r t i n g  t h e  result (Bib1.22) 

When i n s t a l l i n g  Cerenkov counters on space vehicles,  t h e  e f f e c t  of stopping 
X-radiation and p a r t i c l e s  d i r e c t l y  on t h e  PM l eads  t o  an increase i n  background. 
T h i s  phenomenon was s p e c i f i c a l l y  noted during opera t ion  of t h e  equipment i n  /122
t h e  r ad ia t ion  be l t s  on board t h e  first space rocket and was la ter  used t o  de
termine t h e  t o t a l  count of p a r t i c l e s  i n  t h e  channel w i t h  m i n i ”  threshold 
(Bibl.42) 
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Sect ion 4.. Basic Components of t h e  Electronic  C i rcu i t s  

Wiring diagram. The bas ic  purpose of t h e  c i r c u i t  i s  t o  supply power t o  t h e  
counters. I n  this case, t h e  width of t h e  spectrum of t h e  recorded pulses  should 
coincide with t h e  passband of t h e  subsequent e l ec t ron ic  c i r c u i t .  

It i s  common p rac t i ce  t o  consider t h a t  t h e  passband of t h e  c i r c u i t  AvoPt 
(or i t s  t i m e  constant 7,p t  ) and t h e  width of t h e  s i g n a l  spectrum Av, are re l a t ed  
by t h e  expression 

AVOPT=	-I - 1.37AV . (17.+) 
TOPT 

The output vol tage taken from t h e  load r e s i s t ance  of t h e  counter Ra, as 
indicated by t h e  above-discussed wiring diagrams, i s  equal t o  

where -	dU i s  the  time rate of change i n  voltage a t  a t o t a l  capacitance of t h ed t  

c i r c u i t  C, . 
The product of R C , ,  which i s  the  t i m e  constant of t h e  c i r c u i t ,  i s  usual ly  

made s u f f i c i e n t l y  s m a h  t o  ensure t h e  required passband. 

Frequently, this i s  so s m a l l  t h a t  t h e  condi t ion of discr iminat ion of pu lses  
w i t h  durat ions 7 recorded from t h e  counter (RaC, < I-)i s  s a t i s f i e d ,  which permits 
s tandardizat ion of t h e  pulses  i n  shape and durat ion,  f a c i l i t a t i n g  operat ion of 
t h e  following sca l e r .  Pulse discr iminat ion by t h e  c i r c u i t  necess i t a t e s  t h e i r  
s u t x e  quent amplification. 

Pulse a n p l i f i e r s .  The most important requirements on pulse  ampl i f ie rs  are 
high operating s t a b i l i t y  and uniformity of amplif icat ion i n  a wide frequency 
band. I n  t h e  equipment i n  question, t h e  amplifier c i r c u i t s  are assembled of 
semiconductor elements, providing s u f f i c i e n t l y  high r e l i a b i l i t y ,  s t a b i l i t y ,  
compactness, and low power consmption. 

Two var ian ts  of connecting t h e  t r a n s i s t o r s  are most widely used i n  ampl i 
f i e r  c i r c u i t s :  with a common co l l ec to r  (emi t te r  follower) and wi th  a common /123
emitter. A cha rac t e r i s t i c  f e a t u r e  of t h e  amplifier c i r c u i t  with a common col
l e c t o r  i s  a high input  (10 - 100 kQ) and low output (10 - 500 a) res i s tance .  
T h i s  permits  using such amplifiers as matching or output  devices. The passband 
of t h e  emitter follower i s  determined mainly by t h e  frequency p rope r t i e s  of t h e  
t r a n s i s t o r  and i s  numerically equal t o  i t s  cutoff  frequency (Av = vc). Ampli
f iers  with a common emitter are pr imar i ly  used f o r  amplifying voltage.  The pass-
band of such ampl i f ie rs  i s  determined by t h e  cutoff  frequency of t h e  t r a n s i s t o r  
vc and by its amplif icat ion f a c t o r  wi th  respect  t o  t h e  current  ct 

(AV a ~ ~--a).1 

Unified amplifiers, designed under considerat ion of t h e  s p e c i f i c  operat ing 
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cha rac t e r i s t i c s  ( l a r g e  overloads, broad temperature range of t h e  medium, e tc . )  
have found wide use i n  equipment. 

ou t p u  t 

Fig.12.V Wiring Diagram of Amplifier-Shaper Cascade 
of a Gas-Discharge Counter. 

Amplification and shaping of t h e  pulses  taken from t h e  gas-discharge 
counters was accomplished by a two-stage amplifying-shaping cascade (Fig.12.V) 
designed t o  operate  on negative input  pu lses  with an amplitude from 2 t o  50 v. 
To increase t h e  input  res i s tance ,  t h e  first s tage  cons i s t s  of a t r a n s i s t o r  TI 
connected i n  t h e  c i r c u i t  w i t h  t h e  common col lec tor .  Amplification and shaping 
of t h e  pulses  (owing t o  sa tu ra t ion  of t h e  co l l ec to r  current)  i s  accomplished by 
t h e  second s tage  of t h e  cascade, cons is t ing  of a t r a n s i s t o r  T2. The catcher  
diode D ( type D9Zh) i s  connected i n t o  this stage.  The output pulses  of t h e  
cascade have s u f f i c i e n t l y  s teep leading ed es, an  amplitude of about 6 v, and a 
durat ion of t h e  order  10 psec (Bibl.15, 517. 

One of t h e  most widely used va r i an t s  of t h e  pulse  ampl i f ie r  of a s c i n t i l l a 
t i o n  counter i s  shown i n  Fig.13.V. The device comprises two amplification 
s tages  assembled i n  a c i r c u i t  with a common co l l ec to r  consis t ing of t h e  t rans
i s t o r s  TI and TS, and two s tages  i n  t h e  c i r c u i t  with a common emitter consis t ing 
of t h e  t r a n s i s t o r s  Ta and T4. S t a b i l i z a t i o n  of t h e  operating conditions of  ,&?&
t h e  t r a n s i s t o r s  i n  this c i r c u i t  i s  provided by direct-current  feedback i n  each 
cascade. The c i r c u i t  of t h e  t r a n s i s t o r  base T2 of t h e  second ampl i f ie r  s tage  
i s  connected with t h e  res i s tance  R4 which serves t o  decrease t h e  f luc tua t ion  of  
t h e  constant vol tage component a t  t h e  t r a n s i s t o r  base Ta i n  t he  case of l a rge  
pulse  amplitudes a t  t h e  input  when t h e  t r a n s i s t o r  T4 changes t o  sa tu ra t ion  con
d i t i on .  The r e s i s t ance  R l l  limits t h e  current  of t h e  t r a n s i s t o r  base T4. A s  a 
r e s u l t ,  t h e  amplifier i s  in sens i t i ve  t o  overloads created by switching it i n t o  
t h e  anode of t h e  PM or t h e  last dynodes. When using a P4.02 t r a n s i s t o r ,  t h e  
t o t a l  amplif icat ion of a l l  four s tages  varies wi th in  t h e  limits from 50 t o  150 
(depending on t h e  magnitude of t h e  r e s i s t ance  R4) or p o s i t i v e  input  pulses  occur 
with an amplitude of 5 - 50 mv and a dura t ion  of about 10 psec (Bibl.15, 5 1 ) .  

Current discharger  (CD). The discharger (Fig.l-4.V) converts t h e  d i r e c t  /125 
current  flowing i n  t h e  c i r c u i t  of t h e  anode or dynode of t h e  PM of t h e  s c i n t i l 
l a t i o n  counter i n t o  a pulse  t r a i n .  The CD operates  on t h e  p r inc ip l e  of a re
laxa t ion  o s c i l l a t o r  wi th  a neon tube  L1. The number of pu l se s  n tapped from the  
res i s tance  Rz i n  u n i t  time i s  determined by t h e  time average of t h e  current  i 
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of t h e  capacitor charge C1 i n  t h e  i n t e r v a l  between cutoff and i g n i t i o n  of t h e  
tube L,: 

where Ui,  and U, are t h e  p o t e n t i a l s  of i g n i t i o n  and cutoff of t h e  neon tube, and 
q i s  t h e  charge received by t h e  capacitor C, i n  t h e  time t. 

t p u t  

Fig.13.V Wiring Diagram of Pulse Amplifier of S c i n t i l l a t i o n  
Counter. 

Fig.L!+.V Wiring Diagram of Current Discharger. 

The r e s i s t o r  Rl limits t h e  current flowing through t h e  capac i tor  C,, t o  
maintain l i n e a r  dependence [eq. (19.V) 1. 

The pulses  of t h e  CD used i n  t h e  equipment f o r  cosmic ray  measurements 
(Bibl.15) had an amplitude up t o  30 v and were de l ivered  d i r e c t l y  t o  t h e  first 
f l ip - f lop  of t h e  sca l ing  c i r c u i t  across t h e  blocking capacitor.  

Flip-flop Ci rcu i t s .  The f l ip - f lops  used i n  t h e  sca l ing  c i r c u i t s  should 
have high response and opera t iona l  s t a b i l i t y .  

The response of a f l i p - f lop  i s  characterized by t h e  cutoff t r i g g e r  fre
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quency v, which i s  determined mainly by t h e  frequency parameters of t h e  trans
i s t o r s  and t h e i r  operating conditions. The response, of course, drops if open 
t r a n s i s t o r s  operate under sa tu ra t ion  conditions. 

The s t a b i l i t y  of t h e  f l ip - f lop  i s  charac te r ized  by i t s  opera t iona l  stabili
t y  when t h e  parameters devia te  from normal, which usua l ly  occurs on any varia
t i o n  i n  the  reverse cur ren t  of t h e  c o l l e c t o r  Icoand i n  t h e  ampl i f ica t ion  f a c t o r  
of t h e  t r a n s i s t o r s  I3 with  temperature. C i r cu i t s  i n  which t h e  open t r a n s i s t o r  
operates exac t ly  under sa tu ra t ion  conditions ev ident ly  have t h e  g r e a t e s t  stabili
ty .  Therefore, f l ip - f lops  w i t h  a moderately l a r g e  load (medium-frequency) op
erate as a rule under sa tu ra t ion  conditions. 

The input t r i g g e r  pu l se s  of o s i t i v e  p o l a r i t y  t o  t h e  t r a n s i s t o r  bases of 
t h e  f l ip - f lop  TI and Ta (Fig-l5.V P are fed across  t h e  blocking diodes 9 and D2 
r a t h e r  than across  t h e  blocking capac i tors  as usual. A s  a result, t h e  feedback 
of t r a n s i e n t s  of t h e  f l ip - f lop  t o  t h e  o s c i l l a t o r  (preceding f l ip - f lop)  i s  elimi
nated, t r a n s i t i o n  t o  a new stable state i s  f a c i l i t a t e d  ( t h e  capacitance, con
nected i n  p a r a l l e l  with t h e  input,  i s  small), and t h e  p o s s i b i l i t y  of spurious 
operation of t h e  f l ip - f lop  under t h e  e f f e c t  of negative noise pulses  i s  reduced. 

The conditions of symmetry of t h e  f l ip - f lop ,  required f o r  optimum reliabili
t y  and throughput, are indica ted  i n  Fig.15.V. 
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Fig.15.V Wiring Diagram of a Symnetric Flip-Flop (a) and 
Voltage Diagram at  i t s  Input and Outputs (b) . 

The condition of s a t u r a t i o n  of t h e  open t r a n s i s t o r  ( t h e  base cur ren t  ex-
Ceedhg t h e  sa tu ra t ion  threshold,  i.e., Ib 2 I b s )  and a l s o  t h e  condition of 
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r e l i a b l e  blocking of t h e  second t r a n s i s t o r  ( t h e  voltage across  i ts base ub being 
pos i t i ve  and grea te r  than t h e  c r i t i c a l  cutoff voltage u b . t )  are ensured by proper 
se lec t ion  of t h e  res i s tances  of t h e  c i r c u i t  (R,  R,, and R b )  and t h e  feed 
voltage E,. 

The amplitude of t h e  output pulse  of t h e  f l ip-f lop Uout  can be determined 
Icy t h e  approximate formula, which i s  obvious from Fig.15.V 

Such an estimate disregards t h e  voltage drop across  t h e  co l l ec to r  load, 
due t o  t h e  flow of t h e  co l l ec to r  current  of t h e  blocked t r a n s i s t o r  Loo 

The value of t h e  t r igger ing  threshold of t h e  f l ip-f lop,  whose Wiring dia
gram i s  given i n  Fig.lS.V, together  wTth i t s  s t a b i l i t y  according t o  i n v e s t i g a  
t i o n s  by G.S.Dragun e t  al. (Bib1.25), are p l o t t e d  i n  Fig.16.V. The graph /127
shows t h a t ,  on var ia t ion  i n  t h e  feed voltage from U+. t o  6 v and i n  t h e  tempera
t u r e  from 0" t o  6OoC t h e  threshold changes by not  more than 25%. 

G c " t o f f , v  

0.6Eli3 
6 8 IO 12 14 U j e e d , v  

Fig.16.V Operating Threshold of t h e  Flip-Flop as a 
Function of Temperature (a )  and Feed Voltage (b)  . 

The s t a b i l i t y  of t h e  threshold i s  espec ia l ly  important when using f l i p -
f lops  as discriminators i n  t h e  channels of s c i n t i l l a t i o n  or Cerenkov counters. 
The cutoff frequency of f l ipp ing  t h e  f l ip-f lop v,, composed of t r a n s i s t o r s  with 
a threshold frequency of vt not exceeding 10 mc can be estimated (Bib1.63) from 
t h e  inequal i ty  v, 5 0.2 v t .  

To increase t h e  response it i s  necessary t o  use high-frequency t r a n s i s t o r s  
and t o  provide f o r  an unsaturated regime i n  w h i c h t h e  time of d i s s ipa t ion  of t h e  
minority c a r r i e r s  i n  the  base of t h e  open t r a n s i s t o r  decreases. For this 
purpose, addi t iona l  shunting diodes are connected i n  t h e  c i r c u i t s  of t h e  high-
frequency f l ip - f lops  i n s t a l l e d  i n  t h e  channel of t h e  sca l ing  c i r c u i t ,  o r  o ther  
methods of l imi t ing  t h e  co l l ec to r  current  of t h e  t r a n s i s t o r s  are used. 

The wiring diagram of a high-frequency f l ip - f lop  serving as pulse  discrimi
na tor  of t h e  PM i n  onboard r ad ia t ion  measuring equipment i n  rockets and satel
l i t es  (Bibl.51) i s  shown i n  Fig.17.V. The f l ip-f lop i s  actuated by pos i t i ve  
pulses  t h a t  pass  through t h e  blocking diodes D1 and Dz only when t h e i r  amplitude 
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exceeds t h e  t r i g g e r  voltage of t h e  diodes. The la t te r  can be regulated by means 
of a d iv ide r  a t  t h e  r e s i s t o r s  R1 and R2. A s  a result, t h e  pulses  are se lec ted  
with respect t o  t h e  threshold of recording p a r t i c l e s .  The d iv ide r  at t h e  re
s i s t o r s  R3, % and t h e  diodes D3 and D4 serve t o  prevent t h e  t r a n s i s t o r s  from 
enter ing  i n t o  t h e  sa tu ra t ion  regime of t h e  c o l l e c t o r  cur ren t .  

The cutoff t r i g g e r  frequency v,  of t h e  high-frequency threshold f l ip - f lop  
(HTF), composed of P406 t r a n s i s t o r s  according t o  t h e  above c i r c u i t ,  f o r  per iodic  
standard pulses  ( s t r a y s )  i s  3 x lo5 cps f o r  s t a t i s t i c a l l y  d i s t r ibu ted  pulses.  
The s t a b i l i t y  of t h e  threshold i s  not l e s s  than 10% on f luc tua t ions  i n  t h e  ambi
en t  temperature from -30" t o  +5OoC a t  va r i a t ions  i n  t h e  feed voltage by +20% 
(Bibl.15). The value of t h e  operating threshold can be varied,  by means of /128 
a d iv ider  (Rl, R2), from 0.6 t o  2.5 v a t  a dura t ion  of t h e  t r i g g e r  pu lses  of 
2 - 10 psec (Bibl.51). 

Fig.17.V Wiring Diagram of High-Frequency Flip-Flop 
w i t h  Anrplifier. 

The amplitude a t  t h e  output of t h e  f l ip - f lop  reaches 3 - 4. v, which permits 
t h e i r  interconnection i n  t h e  sca l ing  c i r c u i t s .  The in te r roga ted  f l ip - f lops ,  
whose output pu lses  were fed across an adder d i r e c t l y  t o  t h e  telemetry system, 
were made up of P16B t r a n s i s t o r s  and were equipped w i t h  a T3 t r a n s i s t o r  output 
power amplifier (Fig.17.V). The c i r c u i t  R3, DS, Rq, and D4 was not s e t  up a t  
low loads of t h e  f l ip - f lop .  

Monostable mul t iv ibra tors  (W), o r  driven mul t iv ibra tors  with emitter 
c o q l i n g ,  are used i n  t h e  equipment under consideration f o r  standardizing
(normalizing) t h e  counter pu lses .  

The c i r c u i t  of t h e  MMV (Fig.l8.V), as a result of it being t r iggered  by an 
external pulse  U,, produces one pulse  U o u t  = Uc2 whose amplitude and duration 
are always t h e  same. Thus, t h e  pulse  t r a i n  whose amplitude and dura t ion  a r e  
s u f f i c i e n t  f o r  t r i gge r ing  t h e  monostable mul t iv ibra tor  i s  transformed i n t o  a 
sequence of standard pulses  needed f o r  feeding t o  an output device of t h e  count
ing-rate meter type. 



I n  t h e  s t a r t i n g  ( s t a b l e )  condition, t h e  t r a n s i s t o r  TI i s  closed and T2 i s  
open. This i s  ensured by se l ec t ing  t h e  r e s i s t ances  cons t i t u t ing  t h e  c i r c u i t  i n  
Fig.18a.V, w h i l e  t h e  operating conditions of t h e  open t r a n s i s t o r  are determined 
mainly by t h e  magnitude of Rb.  

The t r i g g e r  pu lse  of negative po la r i ty ,  on en ter ing  t h e  base of t h e  cut-off 
t r a n s i s t o r  TI,  opens it and thus  causes t h e  development of a cascading process 
of reversing t h e  c i r c u i t ,  as a result of which t h e  t r a n s i s t o r  T2 i s  cu t  o f f .  /129
On reversing t h e  c i r c u i t  a t  t h e  c o l l e c t o r  of t h e  t r a n s i s t o r  TI ,  t h e  p o t e n t i a l  
r i s e s  s t eep ly  t o  a value of E, - I,R, and, at  t h e  c o l l e c t o r  of t h e  t r a n s i s t o r  
T2, drops t o  E,. Consequently, a p o s i t i v e  pulse  can be taken from t h e  fonner 
and a negative pulse  from t h e  lat ter.  

&) y" 
, t 4-E ,  I V  b t  

Fig.18.V Wiring Diagram of a Monostable Multivibrator ( a )  
and Voltage Diagrams a t  i t s  Charac te r i s t ic  Points (b) .  

The basic process determining t h e  duration of t h e  shaped pulse  T i s  t h e  dis
charge of  t h e  timing capac i tor  C1 across t h e  r e s i s t o r  Rb ,  t he  i n t e r n a l  resist
ance of t h e  voltage source E,, t h e  r e s i s t o r  Re ,  and t h e  open t r a n s i s t o r  TI .  We 
can demonstrate (Bib1.63) t h a t  7 = 0.7 RbC1. 

The amplitude of t h e  output pu lse  U o U t  taken from the  load of t h e  t r a n s i s t o r  
T2 evidently (Fig.18.V) i s  equal t o  

The duration of t h e  leading edge of t h e  output pu lse  t, i s  determined by 
t h e  threshold frequency of t h e  t r a n s i s t o r s  vt and i s  approximately equal t o  

-I (Bib1.52).
V t  

The monostable mul t iv ibra tor  assembled according t o  t h e  above wiring dia
gram from PI& t r a n s i s t o r s  ( f o r  example, i n  t h e  equipment f o r  measuring heavy 
nuc le i )  formed quasi-square pulses  of a duration of 7 = 20 psec with high sta
b i l i t y  (Bibl.25). 
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Out u t  devices. I n  many space instruments e i t h e r  output adders or counting-
rate .-re used t o  increase  t h e  quantity of information transmitted /130 
over a given channel of t h e  telemetry system. 

The adders a r e  made up of r e s i s t o r s  i n  such a manner t h a t  t h e  output voltage 
taken from severa l  (usually,  t h ree )  f l i p - f lops  i s  surmned, forming, a t  t h e  output 
of t he  device, a s ing le  s igna l  whose amplitude varies i n  s t eps  from zero t o  
maximum. 

Fig.19.V Wiring Diagram of Adder ( a )  and Voltage 
Diagram Across i t s  Res is tors  (b) . 

The simplest c i r c u i t  of an adder operating on th ree  f l i p - f lops  i s  shown i n  
Fig.19a.V. The t r i g g e r  pu lses  are fed  t o  t h e  r e s i s t o r s  R I ,  Rz, and R3 and t h e  
output voltage i s  tapped from t h e  r e s i s t o r  R. Thus, this c i r c u i t  i s  a d iv ider  
with a var iab le  res i s tance  Rk (where k i s  equal t o  1, 2, or 3) whose voltage /131 
at t h e  output i s  

(22. v) 

where U i s  t h e  amplitude of t h e  pulses  a r r iv ing  from t h e  f l i p_ f lops .  
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Equation (22.V) shows t h a t  t h e  l a r g e r  Rk, t h e  smaller t h e  voltage U o u t .  If 
t h e  f l ip - f lops ,  connected i n  series i n t o  t h e  c i r c u i t ,  produce pulses  with t h e  
same amplitudes U and t h e  r e s i s t o r s  are se lec ted  so t h a t  R1:R2:R3 = 4:2:1, then 
w i t h  a uniform load of t h e  counting c i r c u i t  t h e  time diagrams of t h e  voltages 
across t h e  r e s i s t o r s  of t h e  adder w i l l  have t h e  shape shown i n  Fig.19b.V. In 
constructing t h e  diagrams it was  necessary t o  make allowance f o r  t h e  number of 
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s t eps  equal t o  seven, s ince  C Rk = 7 relative units and t h e  v a r i a t i o n  i n  t h e  
k =1 

output voltage a t  one s tep  i s  equal t o  l / 7  U o u t m a x .  Hence, it follows t h a t  t he  
magnitude of t h e  output voltage of t h e  adder U,,, can be used f o r  determining 
t h e  state of a l l  t h r e e  f l ip - f lops  connected with t h e  adder s ince  t h e  amplitude 
of t h e  output voltage drops p r a c t i c a l l y  t o  zero after each operation of t h e  t h i r d  
f l ip - f lop .  The operation of t h e  CRM (Fig.20.V) i s  based on an accumulation by 
t h e  capacitor C, of t h e  charges produced by each pu l se  a r r iv ing  at  t h e  input.  
During t h e  i n t e r v a l s  between pulses ,  t h e  capac i tor  C, i s  discharged t o  t h e  load 
r e s i s t o r  R1 from which t h e  constant output voltage U,,, enter ing  t h e  telemetry 
system i s  taken. 

I n p u t  o u t p u t  

Fig.20 .V Scheme of t h e  Third Flip-Flop . 

Under s t a b l e  conditions when t h e  r a t e  of t h e  pulses  of similar duration 
N pulses/sec a r r iv ing  a t  t h e  CEiM i s  constant, t h e  discharge q produced by t h e  
dosing capacitor Cd and transmitted by it t o  the  r e se rvo i r  capac i tor  C, will be 
equal t o  

4 = Cd (uin -u r ) N f ,  (23.V) 

where U i ,  i s  t h e  voltage amplitude of t h e  input  pu lses ,  U, i s  t h e  voltage across 
t h e  reservoi r  capacitor C,, t i s  t h e  operating time of t h e  c i r c u i t .  The magni
tude of t he  charge l o s t  by t h e  capacitor C, as a result of t h e  discharge cur ren t  
through t h e  r e s i s t o r  R& i s  

q . - - t .UP 
dts- & (2k.v) 

It follows from eqs.(28.V) and (29.V) t h a t  t h e  output voltage, equal t o  t h e  
voltage across t h e  capac i tor  C,, w i l l  be 

ReNuin /132 
Uaut =u, = 

1 +C, R1.V ’ (25 * V I  

It i s  evident from eq.(25.V) t h a t ,  provided CdRaN < 1, t h e  c h a r a c t e r i s t i c  
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curve of t h e  count! -.<--ratemeter, w i l l  have a l i n e a r  segment wi th in  whose limits 
t h e  co r re l a t ion  

(26 .V) 

exists, i f  N 5 " a x ,  where Nm,, i s  t h e  m a x i m u m  counting rate on t h e  l i n e a r  seg
ment of t h e  c h a r a c t e r i s t i c  curve. 

The output vol tage of t h e  CBN, as indica ted  by eq.(25.V), does not depend 
on t h e  magnitude of t h e  r e se rvo i r  capac i tor  C,. The l a t t e r  i s  se lec ted  on- t h e  
bas i s  of t h e  permissible  e r r o r  of measuring t h e  counting rate of s t a t i s t i c a l l y  
d i s t r ibu ted  pulses .  A s  shown by ana lys i s  (Bibl.b), t h e  r e l a t i v e  probable e r r o r  
obtained upon measuring t h e  mean pulse  rate with respect  t o  t h e  output vol tage 
of t h e  in t eg ra t ing  c i r c u i t  i s  

0.67 
E = ____ 

VPNR,C, (27.V) 

From t h e  equal i ty  (27.V), expressing t h e  quant i ty  e i n  percent ,  we f ind  
t h a t  t h e  r e l a t i v e  probable e r r o r  of measurement w i l l  not exceed t h e  prescr ibed 
quantity e% i f  t h e  inequa l i ty  

( 28 .V) 

i s  s a t i s f i e d .  

For example, t o  ensure l i n e a r i t y  up t o  = 500 pulses/sec with an e r r o r  
of measurement of not more than lo%, we must have a t i m e  constant of t he  d is 
charge of t h e  in t eg ra t ing  c i r c u i t  of R$C, * 5 X sec.  To ensure measure
ments by the  CRM of t h e  average rate of s t a t i s t i c a l l y  d i s t r ibu ted  pulses  with a 
standard deviat ion of o = 3%( e  0.67 o) we must have NRtC,  = 500 w h i l e  with an  
e;-ror of o = 1% we already need NRaC, = 5000. 

Since t h e  magnitude of t h e  outpui  vol tage of ,  t h e  CHM depends not only on 
the  average rate of t he  inpu t  pu lses  N but a l s o  on t h e i r  amplitude U i n ,  a 
normalizing device, usual ly  a monostable mult ivibrator ,  i s  i n s t a l l e d  i n  f r o n t  of 
t h e  CRM (Bib1.25). 

Sect ion 5. Equipment f o r  RecordinE Cosmic ~ Rays 

The p r inc ip l e s  of grouping t h e  elements of counters i n  equipment f o r  
measuring t h e  i n t e n s i t y  of cosmic rays are i l l u s t r a t e d  by t h e  c i r c u i t s  of one /133
of t h e  va r i an t s  (Bibl.15) shown i n  Figs.21a.V and 21b.V. 

These p r inc ip l e s  are re ta ined  i n  t h e  layout  of o ther  instruments used both 
i n  t h e  USSR and i n  t h e  USA; however, t h e  number of channels and t h e i r  parameters 
are modified (Bib1.27, 45). 

The equipment under considerat ion cons i s t s  o f  one gas-discharge counter of 
t h e  STS-5 type and one s c i n t i l l a t i o n  counter, with t h e i r  e l ec t ron ic  c i r c u i t s .  



The c i r c u i t s  of t h e  counters are made up of t h e  discussed standard components: 
ampl i f ie r  ( A ) ,  medium-frequency f l ip - f lops  ( T ) ,  high-frequency f l ip - f lops  (HT) 
tuned with respect t o  th reshold  (HTT) or equipped with output amplifiers (HTA),  
and a l s o  of output adders (OA) operating from t h e  f l i p - f lops  with amplifier (TA). 

The STS-5 counter i s  connected i n t o  a c i r c u i t  with a grounded casing 
(Fig.2la.V). The supply ba t t e ry ,  together wi th  t h e  r e s i s t o r  R1 l imi t ing  t h e  
current,  i s  enclosed i n  a metal box and sealed with a composition of equal p a r t s  
of wax and rosin.  The r e s i s t o r  R1 serves t o  p r o t e c t  t h e  b a t t e r i e s  aga ins t  damage 
during a corona discharge appearing at  a pressure  of t h e  order of 1 m m  Hg 
(Bibl.15). 

F'ig.2la.V Block Diagram of One Variant of a Device 
with a Gas-Discharge Counter. 

I n  t h e  s c i n t i l l a t i o n  counter (Fig.21b.V) t h e  pulses  f o r  counting p a r t i c l e s  of 
d i f f e r e n t  energy l i b e r a t i o n  i n  t h e  N a I  ( T l )  c r y s t a l  were  recorded from t h e  Uth, 
gth, and 8th dynodes of t h e  PM-1s ( thresholds  I, 11, and 111, respec t ive ly) .  An 
energy l i b e r a t i o n  exceeding 50 Kev corresponded t o  t h e  threshold I, 500 Kev t o  
t h e  threshold 11, and 5 Mev to  t h e  threshold 111. 

The t o t a l  energy l i b e r a t i o n  ( ion iza t ion )  was determined by t h e  average 
cuvrent of t h e  anode and of t h e  7 th  dynode. T h i s  was  done i n  order t o  determine 
t h e  energy emission during extensive r ad ia t ion  of t h e  c r y s t a l  when t h e  anode 
cur ren t  of t h e  PM is  sa tura ted ,  by comparing t h e  readings of t hese  channels. 
Current dischargers, whose s e n s i t i v i t y  l i m i t  with respect t o  t h e  average dis
charge current of t h e  capacitor was  10-l' amp, were used i n  t h e  ion iza t ion  
channels (Bibl.15). The c i r c u i t  of t h e  current discharger, coupled with t h e  7 th  
dynode, contained an add i t iona l  neon tube Lz which pro tec ted  t h e  dynode aga ins t  

appreciable va r i a t ions  i n  p o t e n t i a l  owing t o  leakage (of  opposite p o l a r i t y  i n  

comparison with t h e  ion iza t ion  cur ren t ) .  

such t h a t  it was f i r e d  upon a p o t e n t i a l  drop of t h e  dynode by 30 - 4.0 v, /135 


The tube La  was f ed  with a voltage 

which stopped a f u r t h e r  drop i n  p o t e n t i a l .  

The presence of s eve ra l  channels of t h e  s c i n t i l l a t i o n  counter permits ob
t a in ing  d iverse  parameters of cosmic rays  at  small weight and energy consumption 
of t h e  equipment [ t h e  energy consumption of one f l ip - f lop  i s  about 4 mw 
( B i b l J 5 ) I .  

Cal ibra t ion  of t h e  instruments i s  done under labora tory  conditions t o  de
termine t h e  bas ic  c h a r a c t e r i s t i c s  of t h e  measuring channels. 

The basic c h a r a c t e r i s t i c  of t h e  t o t a l  i on iza t ion  channels i s  t h e  energy 
release i n  t h e  c r y s t a l  T, correspondi'ng t o  one pu l se  of t h e  current discharger. 
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Fig.2lb.V Block Diagram of One Variant of an Instrument with 
a S c i n t i l l a t i o n  Counter. 



For c a l i b r a t i o n  of t h e  channel, t h e  s c i n t i l l a t i o n  counter i s  i r r a d i a t e d  
gamma-rays emitted by rad ioac t ive  i so topes  Co"" o r  HgZo3 (Bibl.15, 51). 

The count of t h e  recorded pu l ses  i s  done simultaneously with respect t o  t h e  
t o t a l  energy release channel n and with respect t o  t h e  threshold channel record
ing  t h e  number of quanta-dth a given energy N. If we designate t h e  energy re
lease of one quantum by TI, for t h e  t o t a l  energy release i n  t h e  c r y s t a l  AE, we 
obta in  t h e  expression -

A E = N q .  
(29.VI 

.On t h e  o ther  hand, i f  TI i s  t h e  energy released i n  a c r y s t a l  during one op
e r a t i o n  of t h e  current discharger, t h e  energy release during t h e  time of measure
ment w i l l  be 

A E = n q .  (3o.v) 

From e q u a l i t i e s  (29.V) and (3O.V) it follows t h a t  t h e  unknown quantity i s  
equal t o  

N 
q =  -q. (3l.V)
n 


We note t h a t  t h e  quantity 7 i s  t h e  average energy release of one quantum 
of y-radiation of t h e  i so tope  used, which i s  determined from t h e  energy spectrum 
of t he  pulse  amplitudes a t  t h e  output of t h e  photomultiplier.  

The average energy release i n  t h e  NaI ( T l )  c r y s t a l  f o r  ;ouipment of t h e  
discussed type, upon i r r a d i a t i o n  with t h e  amma-quanta of Co i s  equal t o  
530 Kev (Bibl.51). The quantity 7 = 4 x 18' ev/pulse. T h i s  means t h a t  one 
pulse  i n  t h e  channel of t o t a l  energy release corresponds t o  t h e  transmission of 

approximately -~ 
Id" = 8 x lo" pulses  i n  t h e  first threshold channel of 

5.3 x 10" 
t h e  instrument. 

For an  ex terna l  s c i n t i l l a t i o n  counter with a C s I  (T1) grystal, with ana
logous c a l i b r a t i o n  of t h e  f i r s t  channel, a value of 7 = Id ev  was obtained /136 
(Bibl.51), and t h e  constancy of this coe f f i c i en t  was checked i n  a wide range of 
energy release ( B i b l . 1 5 ) .  

The min imum energy release i n  t h e  c r y s t a l  It, beginnin? wi th  which t h e  
p a r t i c l e  i s  recorded i n  a given channel (counting threshold , i s  determined upon 
c a l i b r a t i o n  of t h e  threshold channels. For this p-ose, t h e  counter i s  i r r a d i 
a ted  with gamma-quanta of t h e  rad ioac t ive  i so tope  Co o r  Cs13' [ the  former 
emits gamma-quanta wi th  an energy of,  1.1and 1.3 Mev while t h e  l a t t e r  emits 
661 Kev (Bib1.29)I. The counting threshold  TIt is  ca lcu la ted  on t h e  b a s i s  of t h e  
l i n e a r  dependence of t h e  pu l se  amplitude of t h e  counter U on t h e  energy release 
i n  t h e  c rys t a l .  F i r s t ,  t h e  l i n e a r i t y  of t h e  ampl i f ie r  A at  t h e  inpu t  of a given 
channel i s  checked by means of an osc i l lograph  and a reference s igna l  generator. 
Then, t h e  magnitude of t h e  pulse  U1 at t h e  output of t h e  amplifier A upon irradi
a t i o n  of t h e  counter i s  measured by an oscil lograph. From t h e  p ropor t iona l i t y  
of t h e  energy release and pulse  it follows t h a t  



where 7 i s  t h e  mean energy re lease  of gamma-quanta emitted by a given isotope.  
W e  note t h a t  eq.(32.V) can be used a l so  f o r  es tab l i sh ing  t h e  necessary operating 
threshold of t h e  f l ip - f lop  Ut i f  it i s  necessary t o  ad,just t h e  channel f o r  op
e ra t ion  with respect t o  a gi;en magnitude of It-(Bibl.51). 

Calibration of t h e  channels of t h e  gas-discharge counters cons is t s  i n  de
termining t h e  load cha rac t e r i s t i c s  by t h e  method proposed earlier ( see  Sect .3). 
T h i s  permitted broadening t h e  range of measurable i n t e n s i t i e s  by about one order 
of magnitude. Thus, a t r u e  counting rate of up t o  10" pulses/sec was r e l i a b l y  
recorded by t h e  s c i n t i l l a t i o n  counter and up t o  lo" pulses/sec by t h e  gas-
discharge counter (Bibl.15). 

Section 6. Radiometry Equipment 

Radiometry (dosimetry) equipment i s  designed t o  measure t h e  i n t e n s i t y  of 
ionizing radiat ions and t o  determine t h e  absorbed doses of rad ia t ion  on space 
objects .  The instrumentation comprises the  same type of bas ic  elements as de
scribed above. 
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Fig.22.V Block Diagram of Radiometry Equipment. 
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A s  a t y p i c a l  example, l e t  us examine t h e  radiometry equipment (fig.22.V)
i n s t a l l e d  on t h e  second Soviet  sa te l l i te  [August 1960 (Bibl.51, 59)l .  T h i s  
equipment included : 

one i n t e r n a l  s c i n t i l l a t i o n  counter with a sodium iodide  c r y s t a l  (diam.

30 x U, mm) and a PM-16 photomultiplier;  

two gas-discharge counters STS-5, one of which was shielded with b ra s s  

and s t e e l ,  each 1m th ick ;  

one external s c i n t i l l a t i o n  counter with a cesium iodide  c r y s t a l  (diam. /137

30 x 2.2 mm) and a PM-15. 


The ins ide  counters with t h e i r  measuring c i r c u i t s  ( a s  shown i n  t h e  block 
diagram of Hg.22.V) were designed as an i n t e g r a l  instrument. The i n t e r n a l  
s c i n t i l l a t i o n  counter had two channels: 1)a .channel f o r  measuring t h e  t o t a l  
energy release by means of a cur ren t  discharger CD, 2) a threshold channel wi th  
a threshold 'lit = 25 - 30 Kev [ t h e  threshold operating voltage of t h e  HTT was 
Ut = 0.75 v and t h e  ampl i f ica t ion  f a c t o r  of t h e  three-stage amplifier A was 100 
( Bib1.51) 1. 

The outside-counter, designed as an ind iv idua l  instrument, had only one 
channel of t o t a l  e n e r m  re lease .  T h i s  counter was  mounted t o  t h e  outside sk in  
of t he  spacecraft  t o  measure t h e  energy flux of s o f t  charged p a r t i c l e s ,  f o r  /138 
example e lec t rons  of t h e  r ad ia t ion  b e l t s .  Within t h e  limits of a s o l i d  angle 
equal t o  0.15 s te rad ians ,  i t  had a pro tec t ion  of aluminum f o i l  of 1mg/cm2 thick
ness; i n  o ther  d i rec t ions ,  t h e  shielding of t h e  counter varied from 1 t o  
150 gm/cm2 (Bibl.51). 

The designations of t h e  building blocks (elements) i n  Fig.22.V correspor,d 
t o  those adopted earlier ( see  Sect.5). 

A spec ia l  f ea tu re  of t h e  equipment was t h a t  both gas-discharge counters 
had t h e  sca l ing  c i r c u i t  i n  common. Their switching was accomplished a l t e r n a t e l y  
by t h e  commutator C controlled by a mul t iv ibra tor  ( t imer)  Ta ( a t  a t h e  i n t e r v a l  
of 16 min). The counter, surrounded by a sh ie ld ,  had a smaller nunber of pre
liminary f l ip - f lops  ( four ) .  

All output s igna l s  were s tored  by an onboard self-contained memory SCM with  
a %-hour storage capacity. 

The counters were supplied from storage b a t t e r i e s  B1 - B4 ( type  GB-400) and 
a voltage of 1600 v was del ivered  t o  t h e  PM. The radiometers were ca l ib ra t ed  
with respect t o  t h e  same c h a r a c t e r i s t i c s  as i n  t h e  method described earlier ( s e e  
sec t .  5). 

Section 7. EquiDment f o r  Inves t iga t ing  t h e  Nuclear Component~ 

of cosmic Rays 

A s  an example, l e t  us examine t h e  equipment designed for recording heavy 
nucle i  i n  t h e  f l u x  of cosmic rays and t h e  t o t a l  count of p a r t i c l e s  s t r i k i n g  on 
t h e  receiver.  T h i s  equipment was i n s t a l l e d  on t h e  second spacecraft  launched t o  
t h e  moon on September 12, 1959 (Bib1.25) . 
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The equipment, of which a block diagram i s  shown i n  Fig.23.V, cons is t s  of 
a Cerenkov counter with a cy l ind r i ca l  Plexiglas  de tec tor  (26 X 26 m) combined 
with a PM-25 and an e lec t ronic  counting c i r c u i t  with two threshold channels 
( z  2 5 and z 2 15). 

To separate  t h e  output pu lses  by counting thresholds,  a voltage d iv ider  on 
r e s i s t o r s  R1 and Rz and threshold f l ip-f lops of t h e  sca l ing  c i r c u i t s  are used. 
The sca l ing  c i r c u i t s  contain six f l ip - f lops  TC i n  the  first channel and two f l i p -
f lops  i n  t h e  second channel. 

The state of t h e  th ree  f l ip-f lops (of t h e  t h i r d  and s i x t h  i n  t h e  first 
channel and t h e  second i n  t h e  second channel) was transmitted t o  t h e  radiotele
metry system (RTS) over an adder with a matching amplifier MA. The t h i r d  chan
n e l  (of t h e  t o t a l  count) contains t h e  amplifier s tages  A, 
vibra tor  MMV, and t h e  CRM. The high-voltage power sources 
sealed dry c e l l s .  

PM.257 

(31 

t h e  monostable multi
(900 v) consis t  of 

R TS 

R TS 

Fig.23.V Block Diagram of Equipment Variant f o r  
Recording Heavy Nuclei i n  Cosmic Rays. 

The p r inc ipa l  Wiring diagram of this equipment (Bib1.25) i s  shown i n  
Fig.&.V. Here, t h e  output signal i s  taken from t h e  p l a t e  load of t h e  PM 
(110 k i l o h s )  whereas i n  o ther  instruments of this type, designed t o  measure /139 
heavier nuclei ,  t h e  outputs t o  t h e  counting c i r c u i t  are taken from the  loads i n  
t h e  c i r c u i t s  of t h e  intermediary dynodes. Between the  last  dynodes of t h e  PM, 
capaci tors  (each of 10’’ f )  are i n s t a l l e d  which prevent a drop i n  po ten t i a l  i f  
t h e  PM are heavily i r r ad ia t ed .  

The amplif ier  stages,  f l ip-f lop loops, and output devices a re  assembled on 
t h e  bas i s  of t h e  previously discussed standard c i r c u i t s .  The s igna l  t o  t h e  
radiotelemetry system i s  del ivered from t h e  resistance-coupled adder (39, 75, 
and 130 k i l o h s )  across  t h e  PlOl t r a n s i s t o r  amplifier and t h e  compensating 
source U, which ensures readout of pos i t i ve  voltage. 

The total-count channel has f i v e  amplif icat ion s tages  s ince it i s  l a i d  out 
t o  measure t h e  weakest pu lses  produced under t h e  e f f e c t  of heavy p a r t i c l e s  on 
t h e  de tec tor  and under t h e  e f f e c t  of various p a r t i c l e s  d i r e c t l y  on t h e  PM (on 
t h e  cylinder,  dynodes, e tc . ) .  The dependence of t h e  output voltage of this 
channel Uout  on t h e  load v cps at t h e  input  of t h e  C H I  for periodic  pulses  i s  
shown i n  Fig.25.V. T h i s  diagram shows t h a t  t h e  cha rac t e r i s t i c  curve of t h e  
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Fig.24.v Principal  Wiring Diagram of Equipment for Recording 
Heavy Nuclei i n  a Cosmic Ray Flux. 
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channel at  loads of more than 500 - 600 pulses/sec passes  i n t o  t h e  sa tu ra t ion  
region and then starts drooping [owing t o  t h e  dead time of t h e  monostable multi
v ibra tor  (Bib1.25) 1 

The l i n e a r i t y  of t h e  Cerenkov counter i s  t e s t e d  by checking t h e  l i n e a r i t y  
of t h e  FM i n  t h e  working range of t h e  output s igna l  amplitudes. For this, l i g h t  
f l a shes  of a spark source are used whose durat ion [about 10'' sec (Bibl.2z)l  i s  
close t o  t h e  f l a s h  durat ion of Cerenkov r ad ia t ion  i n  t h e  de tec tor  (- 10-1 sec) 
and less than t h e  t r a n s i t  t i m e  of t h e  e lec t rons  of t h e  dynode system of t h e  
PM-25 (- 5 x sec).  

By measuring t h e  i n t e n s i t y  of t h e  f l a shes  with an i r is  diaphragm and measur
ing  t h e  amplitude U of t h e  pulses  at  t h e  output of t h e  F'M with a vacuum-tube 
voltmeter, a dependence of t h e  type of U = f ( s )  i s  obtained where s i s  t h e  
area of t h e  iris of t h e  diaphragm. The l i n e a r  segment of this dependence i s  t h e  
operating segment. 

100 300 500 700 300 I100 1300 I500 1700 1900 2100 2300 2 5 0 0 V C P s  

Fig.25.V Character is t ic  Curves of t h e  CRM of t h e  
Total-Count Channel f o r  Loads up t o  300 pulses/sec 

(1)and up t o  2600 pulses/sec (2).  

Fig.26.V Schematic of Device f o r  Checking and Tuning 
Equipment with Cerenkov Counter. 
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A check of t h e  operating s t a b i l i t y  of t h e  equipment and i t s  tuning and 
c a l i b r a t i o n  i s  ca r r i ed  out by making use of t h e  p-mesons of cosmic rays  reaching 
t h e  ear th ' s  surface. 

The amplitude d i s t r i b u t i o n  of t h e  pu l ses  from such muons i s  pe r iod ica l ly  
checked t o  determine t h e  s t a b i l i t y  of t h e  equipment. A Cerenkov counter with a 
de tec to r  placed i n  a light-proof housing ( 3 )  i s  arranged between gas-discharge 
counters (1)(Fig.26.V) forming a cosmic-ray telescope. This permits separating 
a d e f i n i t e  s o l i d  angle of t h e  f i e l d  of v i e w  of t h e  counter w. The quantity w i s  
se lec ted  such t h a t  t h e  e f f e c t i v e  area of t h e  de t ec to r  i s  c u t  out, i.e., t h e  a t h  
of t h e  p a r t i c l e s  i s  approximately equal t o  t h e  height of t h e  de t ec to r  (26 mmP. 
The pu l ses  of a l l  fou r  groups of t h e  counters of t h e  te lescope  are set t o  t h e  
coincidence c i r c u i t  with a resolving t i m e  of 7 = sec. Upon operation of 
this c i r c u i t ,  t h e  pu l se  a t  t h e  output of t h e  PM i s  measured. Thus, only p-mesons 
passing through t h e  s o l i d  angle w are se lec ted .  The pu l ses  of t h e  PM are / a 2
measured by photographing t h e  screen of t h e  oscil lograph. Fromthe obtained 
results, a curve i s  p l o t t e d  of t h e  pulse  amplitude d i s t r i b u t i o n  of t h e  p-mesons, 
from which the  average pulse  from a p-meson a t  t h e  output of t h e  PM of this 
instrument i s  determined. 

Inves t iga t ions  (Bibl.7) show t h a t  t h e  s t a b i l i t y  of t h e  instruments i s  char
ac t e r i zed  by a va r i a t ion  i n  the  average pu l se  not exceeding 10 - 20% over a 
period of severa l  months. Such a s t a b i l i t y  of t h e  ampl i f ica t ion  f a c t o r  of a PM 
i s  considered s u f f i c i e n t  t o  estimate t h e  f luxes  of various groups of nuclei .  

Calibration of each channel of t h e  instrument i s  done i n  t h e  following 
manner: Short pu lses  are delivered from a generator across t h e  RC matching 
c i r c u i t  t o  t h e  input  of t h e  channel which i s  disconnected from t h e  PM. The 
pulse  amplitude f o r  a channel tuned t o  count s ing ly  charged p z r t i c l e s  i s  made 
equal t o  t h e  average amplitude of t h e  pu l se  from t h e  p-meson U,. The threshold 
channels tuned t o  count p a r t i c l e s  wi th  d i f f e r e n t  z, as ind i sa t ed  bx eq.(l6.V), 
should operate only a t  an amplitude a t  i t s  inpu t  exceeding U, by z times. For 
example, t o  tune and c a l i b r a t e  a channel of z 2 5, an  amplitude equal t o  25 
i s  supplied a;d f o r  a channel of z 2 15 ,  a threshold amplitude a t  t h e  input  
equal t o  225 U,. 

The threshold of t h e  total-count channel ( i nd ica to r  of i n t e n s i t y )  i n  this 
instrument i s  tuned t o  operate from a pulse  corresponding t o  1/3 Vu. 

To check t h e  performance of t h e  instrument before launching, a neon tube 
(2), shown i n  Fig.26.V, i s  mounted i n  t h e  light-proof housing of t h e  counter 
opposite t h e  P lex ig las  de tec tor .  When checking t h e  performance of t h e  ins t ru
ment, t h e  c i r c u i t  of t h e  r e l axa t ion  o s c i l l a t o r ,  mounted i n  t h e  console for inde

1 	 pendent checking, i s  connected t o  this tube. The readings from t h e  adder output 
appear on t h e  needle i n d i c a t o r  of t h e  console during f lash ing  of t h e  tube. 

The total-count channel i s  checked by means of t h e  i so tope  Co"" i n  t h e  same 
manner as t h a t  used for t h e  above-discussed instruments ( s e e  Sect.5 of this 
Chapter). 



Sect ion 8.  Eauipment f o r  Measuring Comuscular Fluxes 

The i n t e n s i t y  of p a r t i c l e s  of various energy i n  t h e  corpuscular f luxes  a t  
various heights of t h e  upper atmosphere was measured i n  t h e  USA (Bibl.31, 77)
m a i n l y  byzmeans of s c i n t i l l a t i o n  counters, with a t h i n  (of t h e  order of 
0.1 gm/cm ) C s I  (Tl)  c rys t a l .  To reduce t h e  i r r a d i a i i o n  of t h e  PM, a l aye r  of 
aluminum ( f o i l )  of a thickness  of ( 3  - 4)lo-” mg/cm was vacuum-deposited on 
t h e  outer  surface of t h e  c rys ta l .  I n  this case, t h e  sensz t iv i ty  t o  i r r a d i a t i o n  
from t h e  sun i s  decreased approximately by a f a c t o r  of 10 , but p a r t i c l e s  /l43
with a very small mean free pa th  are not recorded. On t h e  other  hand, energet ic  
p a r t i c l e s  of cosmic rays as well as X-rays and y-radiation are not recorded by 
t h e  t h i n  c rys t a l .  For example, of t h e  two s c i n t i l l a t i o n  counters used by L.G. 
Meredith e t  al. (Bibl.31), one recorded e lec t rons  F t h  an energy i n  t h e  range 
from 3 t o  100 Kev a t  a s e n s i t i v i t y  from lo-’ t o  10 erg*cm-2*sec-1 , protons 
with an energy from 90 Kev t o  1.1 Mev, and heavier ions at a s e n s i t i v i t y  from 
lo” t o  lo” *set' steradian- . The recorded p a r t i c l e s  are separated by 
t h e i r  def lec t ion  i n  magnetic or e l e c t r i c  f i e l d s  and by varying t h e  layout of t h e  
counters. 

///- - -iZ\ 
llound a p e r t u r e  

hlaene t 

Fig.27.V S c i n t i l l a t i o n  Counters for Recording Electrons ( a )  
and Protons (b)  i n  Corpuscular Fluxes. 

The counters used by McIlwein (Bibl.31), f o r  inves t iga t ing  corpuscular 
fluxes t h a t  are responsible f o r  po la r  auroras,  are of i n t e r e s t .  

The irrput of t h e  e lec t ron  receiver  (Fig.27a.V) i s  provided with a diaphragm 
having a round aperture  and a focusing c o i l ,  whose current i s  varied i n  s teps  
from 0 t o  15 amp. Thanks t o  this, e lec t rons  with an energy from 3 t o  100 Kev 
were col lected on t h e  t h i n  annular s c i n t i l l a t o r  C s I  (Tl) .  The lower l i m i t  i s  
determined by t h e  thickness  of t h e  alminum f o i l  and t h e  upper l i m i t  by t h e  
maximum focusing current .  Protons with an energy of E, > 45 Kev, f o r  a l l  
p r a c t i c a l  purposes, are not def lected by t h e  magnetic f i e l d  of t h e  c o i l  and are 
not recorded. The change i n  current of t h e  PM i s  judged f r o m t h e  energy spec
trum of t h e  recorded electrons.  The geometry f a c t o r  of t h e  rece iver  was equal 
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t o  8.5 x 10‘” cm” ster. 

I n  t h e  proton rece iver  (Fig.27b.V), t h e  s c i n t i l l a t o r  was made i n  t h e  ,/I44
form of a d i sk  of C s I  (T l )  attached d i r e c t l y  t o  t h e  cy l inder  of t h e  PM. The 
angle of v i e w  of t h e  counter i s  determined by a diaphragm and by t h e  i n s i d e  hole 
of an annular magnet whose f i e l d  (400 gauss a t  t h e  hole center )  prevents elec
t rons  with an energy below 1Mev from s t r i k i n g  t h e  ind ica tor .  The geometry 
f a c t o r  of this rece iver  was 3.5 x cm2 ster. 

Receivers similar t o  s c i n t i l l a t i o n  counters are most widely used i n  Soviet 
equipment, but t h e  s c i n t i l l a t o r s  themselves cons is t  of t h i n  l a y e r s  of zinc 
s u l f i d e  ac t iva ted  with s i l v e r  ZnS ( A g )  or strontium phosphate ac t iva ted  with 
europium Sr3(P04)2(Eu). A f luorescent  substance ( 5 )  (Fig.28.V) seve ra l  mg/cm2 
i n  thickness i s  deposited on a g l a s s  p l a t e  (6)  i n s t a l l e d  i n  f r o n t  of t h e  PM 
(Bibl.19). 

5 
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Fig.28.V Diagram of t h e  Electron Indica tor .  

I n  t h e  simplest instrument ( e l ec t ron  ind ica to r )  t h e  f luorescent  screen i s  
i n s t a l l e d  i n s i d e  an aluminum tube (1)with a c e r t a i n  angle of v iew,  l imi ted  by 
t h e  entrance diaphragm. I n  this case, it must be remembered t h a t  p a r t i c l e s  of 
s u f f i c i e n t l y  high energies can pass  through t h e  body of t h e  tube and t h a t ,  
furthermore, bremsstrahlung can be recorded. T h i s  c r ea t e s  a background which 
must be taken i n t o  account. 

The Z n S  ( A g )  s c i n t i l l a t o r  exh ib i t s  fluorescence i n  t h e  v i s i b l e  region 
(A, a x  = 0.45 - 0.52 p) . The l i g h t  y i e l d  f o r  e lec t rons  r e l a t i v e  t o  N a I  ( T l )  
reaches 3 - 3.5 sec and a r a d i a t i o n  time of - sec (Bibl.49). The 
s c i n t i l l a t o r  a l s o  i s  s e n s i t i v e  t o  X-radiation, t h e  l i g h t  y i e l d  i n  this case 
reaching 20% (Bib1.67). 

Inves t iga t ions  (Bib1.36) show t h a t  t h e  r a d i a t i o n  of t h e  s c i n t i l l a t o r  i s  
d i r e c t l y  propor t iona l  t o  t h e  f lux of energy of t h e  i r r a d i a t i n g  p a r t i c l e s  i f  
t h e i r  energy i s  not very high ( f o r  e l ec t rons  E, < 100 Kev). 

To inves t iga t e  t h e  d i s t r i b u t i o n  of p a r t i c l e s  by energies,  light-proof f o i l s  
of various thickness are used. 

The absorption of e l ec t rons  i n  t h e  substance depends on t h e  atomic number 
z ,  on t h e  energy of t h e  e lec t rons ,  and on t h e  geometry of t h e  beam. I n  addi- / a 5  
t i o n  t o  absorption, t he re  occurs de f l ec t ion  of an ind iv idua l  e l ec t ron  i n  t h e  
f i e l d  of force  of t h e  atomic nucleus which l eads  t o  a random d i s t o r t i o n  (bend) 
of i t s  t r a j ec to ry .  A s  a result, t h e  beam undergoes s c a t t e r i n g  i n  various direc
t ions ,  including backward. T h i s  causes add i t iona l  a t t enua t ion  of t h e  flux which 
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i s  e spec ia l ly  noticeable upon a n  increase  i n  t h e  thickness of t h e  f o i l  (more 
than 1- 2 p f o r  aluninum). A s  a result mainly of t h e  second e f f e c t ,  t h e  f lux 
of e lec t rons  having, f o r  exaqle, an energy of 25 Kev i s  attenuated by about 10% 
i n  aluminum f o i l  of 0.6 pzthickness (0.18 mg/cm”) and by about 99.9% i n  f o i l  of 
8 p thickness (2.38 mg/cm ) (Bib1.29). The length  of t h e  mean free pa th  of 
e lec t rons  of various energy E, i n  aluminum f o i l  (Bib1.28) i s  given below: 

Energy 
E,, Kev ........ 10 20 30 40 50 100 500 1000 2000 5000 
Mean free path,  
mg/cm2 ......... 0.16 0.68 1.5 2.6 4.0 13.5 165 420 950 2540 

I n  t h e  equipment of t h e  Cosmos-3 and Cosmos-5 satel l i tes  aluminum f o i l  of 
0.4, 0.6, and 1.1mg/cm2 was used (Bibl.19) and on t h e  t h i r d  satell i te,  0.4 and 
0.8 mg/cm2 (Bibl.34). The ind ica to r s  reacted t o  e lec t rons  whose mean free pa th  
exceeded t h e  ind ica ted  values. 

An important improvement of t h e  e l ec t ron  i n d i c a t o r s  i n s t a l l e d  on t h e  satel
l i t e s  of t h e  Cosmos s e r i e s  (Bibl.19) was  t h e  use of an acce lera t ing  s tep  po
t e n t i a l  U applied t o  t h e  aluminum f o i l  r e l a t i v e  t o  t h e  center  po in t  of t h e  
tube (1)(Fig.28.V). T h i s  voltage was slowly varied from 0 t o  ll kv ( t h e  dura
t i o n  of t h e  s t eps  was  about 4 sec)  on t h e  Cosmos-5 s a t e l l i t e  and from 0 t o  
4.3 kv on t h e  Cosmos-3, with th ree  intermediate s t eps  (0.15, 3.0, 5.5 and 0.1, 
1.6, 2.3 kv, respectively).  

The acce lera t ing  chamber was shielded f r o m t h e  surrounding space by means 
of g r i d s  ( 2 )  connected with t h e  tube. The receiving screen was protected from 
thermal e lec t rons  of t h e  ex te rna l  plasma by a constant negative p o t e n t i a l  
(-40 v) a p l i e d  t o  t h e  inpu t  g r i d  (3) r e l a t i v e  t o  t h e  center  po in t  of t h e  
casing (17. The magnitude of this p o t e n t i a l  was se lec ted  w i t h  consideration of 
t h e  poss ib l e  p o t e n t i a l  of t h e  container r e l a t i v e  t o  t h e  plasma and t h e  contact 
p o t e n t i a l  d i f fe rence  between t h e  g r i d  (3) and t h e  casing. 

The use  of an acce lera t ing  p o t e n t i a l  permits an appreciable decrease of t h e  
threshold energy of recordable p a r t i c l e s :  a t  a voltage U = 11kv, t h e  energy 
threshold i s  equal t o  4.0 ev, i.e., i s  determined by t h e  p o t e n t i a l  applied t o  t h e  
input g r id  (3). On t h e  o the r  hand, e l ec t rons  w i t h  an energy of 40 - 50 Kev are 
not modulated a t  a l l  by this acce lera t ing  p o t e n t i a l ,  which permits estimating 
t h e  contribution of t hese  p a r t i c l e s .  On analyzing t h e  energy spectrum of / a 6
e lec t rons  i n  a corpuscular f lux ,  both i n  t h e  modulated region of p a r t i c l e  ener
g i e s  (from 40 ev t o  4.0 - !jO Kev) and outs ide  it, t h e  readings of i nd ica to r s  w i t h  
f o i l  of d i f f e r e n t  thicknesses were used (Bibl.19). 

The measuring c i r c u i t  of t h e  e l ec t ron  i n d i c a t o r s  contains an ampl i f ie r  with 
outputs of low and high s e n s i t i v i t y .  Thanks t o  this, t h e  range of measurable 
f l u x  i n t e n s i t i e s  exceeded th ree  orders of magnitude. The threshold flux record
ab le  by t h e  c i r c u i t  f o r  e lec t rons  with an energy of E, = 40 ev was ecpal t o  2 x 
x 10” electrons-cm-” *sec-l x s t e r - l ,  w h i l e  f o r  E, = 7 Kev i t  was  2 x 10 e lec t ron’  
*cm-2 -sec-’ x ster-’ ( i n  an i s o t r o p i c  f l u x ) .  For e lec t rons  w i t h  an energy of 
more than 20 Kev t h e  s e n s i t i v i t y  d id  not depend on t h e  energy of t h e  p a r t i c l e s  
(Bibl.19, 33). 



During f l i g h t ,  t h e  equipment was ca l ibra ted  by means of an e l ec t ron  beam 
emitted by a tritium t a r g e t  which was per iodica l ly  t raced at  t h e  input  of t h e  
ind ica to r  ( a t  an accelerat ing p o t e n t i a l  of 11 kv) . The results obtained ind ica t e  
t h e  operat ional  s t a b i l i t y  of equipment of this type. 

- ?  
D .  cm 

1 1i - i i 
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F'ig.29.V Cal ibrat ion Curves of Electron Indica tors  
with F o i l  of Different Thicknesses. 

Invest igat ions (Bib1.36) have shown t h a t  e lectrons with an energy of about 
E, 2 1Mev a c t  on t h e  screen and dynodes of t h e  PM both d i r e c t l y  by penetrat ing 
through t h e  tube and by t h e  bremsstrahlung caused by them. For p a r t i c l e s  of 
smaller energies, t h e  angle of v i e w  of t h e  ind ica to r s  i s  determined by t h e  
entrance diaphragm and i s  equal t o  1/12 steradian. 

The e lec t ron  ind ica to r s  were ca l ibra ted  i n  a f l u x  of monoenergetic elec
trons . 

Figure 29.V shows, f o r  example, t h e  ca l ib ra t ion  curve of t h e  equipment in
s t a l l e d  on t h e  t h i r d  satel l i te  (Bib1.3) .  Divisions of t h e  radiometric sca le  K 
proport ional  t o  t h e  logaritknn of t h e  photocurrent of t h e  ind ica to r  are p l o t t e d  

131 

I 



on t h e  x-axis and the  curregt  densi ty  of t h e  e F c t r o n s  I i n  a logarithmic /ue7
sca l e  f o r  f o i l  of 0.8 mg/cm (a )  and 0.4 mg/cm (b )  t h i ck  are p lo t t ed  on t h e  
y-axis. The numerals entered next t o  t h e  curves ind ica t e  e n e r a  (Kev) i n  t h e  
axial f l u x  of e lectrons.  

Since t h e  configuration of t h e  energy spectrum of t h e  recorded e lec t rons  i s  
not  known, we determined - i n  analyzing t h e  results of t h e  measurements - t h e  
equivalent energy E,, of a monoenergetic flux of e lec t rons  corresponding t o  t h e  
observed re la t ionship  of t h e  photocurrents of t h e  ind ica tors .  The equivalent 
current  Lq and t h e  energy f l u x  E,, were determined from t h e  value of Ks,on 
t h e  bas i s  of t h e  ca l ib ra t ion  curve. These quant i t ies ,  as indicated by V.I .  
Krasovskiy et  al .  (Bibl.34), cons t i t u t e  t h e  lower limits of t h e  ac tua l  values. 

When analyzing t h e  results obtained by m e a n s  of i nd ica to r s  with a var iable  
accelerat ing f i e l d ,  t h e  depth of modulation of t h e  photocurrent, which permits 
estimating t h e  energy of t h e  recorded p a r t i c l e s ,  was taken i n t o  account 
(Bibl.19). 

Section 9. PrinciDles of Preliminary Data Processing 

The telemetry recordings of t h e  results contain t h e  readings of t h e  adders 
or CRM i n s t a l l e d  i n  various channels of t h e  equipment. I n  in te rpre t ing  t h e  re
cording of t h e  adders, one proceeds from t h e  f a c t  t h a t  t h e  t r a n s i t i o n  from t h e  
first s tep of t h e  recording t o  t h e  second takes  place a t  i n i t i a l  operation of 
t h e  first f l ip-f lop;  from t h e  third s tep  t o  t h e  fou r th  a t  i n i t i a l  operation of 
t he  second f l ip-f lop;  from the  seventh s tep  t o  t h e  zero l e v e l  a t  operation of 
t h e  t h i r d  f l ip-f lop connected with a given adder ( see  Sect.4). 

If  t h e  time of recording a complete cycle of t h e  adder i s  short ,  it is  
obviously possible  t o  use t h e  complete operating cycles of t h e  adder t o  deter
mine t h e  instantaneous i n t e n s i t y  during a given averaging in t e rva l .  

Lzt t h e  number of f l ip - f lops  up t o  t h e  adder be equal t o  k; then, at  t h e  
i n s t a n t  of completion of t h e  recording a complete, cycle t 2 ,  n = 2k+3pulses  w i l l  
pass through t h e  c i r c u i t ,  w h i l e  from t h e  i n s t a n t  of start of t h e  cycle tl 
(during t h e  time A t  = t 2  - ti) An = z! '+~ - Zk pulses  w i l l  pass  through. 

If t h e  required averaging i n t e r v a l  should be smaller than t h e  time of re
cording a complete cycle of t h e  adder, procesqing of t h e  da ta  must be done with 
respect  t o  incomplete cycles. We see from Fig.19.V t h a t ,  f o r  example, at t h e  
moment of operation of t h e  first f l ip-f lop of t h e  adder ti.,.. t h e  number of 
pu lses  passing through t h e  s c d n g  c i r c u i t  w i l l  be nl  = 2 whereas a t  t h e  on
set of operation of t h e  second f l ip-f lop t k + 2  t h e  number wil l  be n2 = 2k+2. 
Consequently, t h e  number of pulses,  p a s s i y 2 d u r i n  such an averaging i n t e r v a l  

-A t  = t k + 2  - tk+l,wi l l  be equal t o  An = 2*'. Toe number of p a r t i c l e s  

counted i n  a given channel of t h e  instrument during un i t  time will be -.An 
a t  

Preliminary processing of t h e  da ta  with respect  t o  a l l  channels comprises: 

1. With respect t o  t h e  total-count ( ion iza t ion)  channels, t h e  t o t a l  /a8 



energy release of t h e  p a r t i c l e s  i n  t h e  c r y s t a l  i s  calculated,  being equal t o  

E = - 	 An 
At  q *  (33.v) 

where T i s  t h e  energy release corresponding t o  one pulse  of t h e  current  dis
charger. 

2. With respect t o  t h e  threshold channels, t h e  number of p a r t i c l e s  released 

i n  t h e  c r y s t a l  and t h e  energy exceeding t h e  threshold energy, equal t o  -An 
are calculated.  A t  ’ 

3 .  With respect t o  t h e  threshold channels and channels of t h e  gas-discharge 
counters, t h e  instantaneous i n t e n s i t i e s  I o f . t h e  recorded p a r t i c l e s  i s  determined 

I=-
A 

An 
&,; (34.v) 

where  A t  i s  a su f f i c i en t ly  small i n t e r v a l  c lose  t o  t h e  t i m e  t t o  which t h e  in
t e n s i t y  I per ta ins ,  and ssff  i s  t h e  e f f e c t i v e  area of t h e  counter. 

I n  processing t h e  information of t h e  dosimeter equipment (on t h e  bas i s  of 
t h e  da ta  of t h e  channel of t o t a l  energy release), we determined t h e  absorbed 
rad ia t ion  dose rate R. For this, we used the  formula 

where m i s  the  mass of t h e  c r y s t a l  i n  grams and t h e  numerical mu l t ip l i e r  serves 
t o  convert t h e  t o t a l  energy release from electron-volts t o  hundreds of e rgs  
(when expressing t h e  dose R i n  rads) .  

Preliminary processing of t h e  da ta  obtained from t h e  equipment with Cerenkov 
counters cons is t s  i n  determining t h e  f l u x  of nuclei  N whose atomic number ex
ceeds t h e  threshold of a given channel. The magnitude of t h e  f lux i s  calculated 
by t h e  formula 

N = - - An 
G A t  ’ 

where G i s  t h e  geometry f a c t o r  of t h e  instrument. 

In t e rp re t a t ion  and processing of t h e  recordings of t h e  channels equipped 
with CRM, f o r  example t h e  total-count channel, are accomplished f r o m  t h e  ca l i 
bra t ion  curve of t h e  CRM [Uout = f ( v  cps)] recorded i n  t h e  laboratory when ca l i 
brat ing a given channel of t h e  instrument ( see  Fig .25 .V) . 

The e r r o r s  of measuring t h e  parameters of cosmic rays on space vehicles  are 
composed of e r r o r s  introduced by t h e  measuring instrument i tself ,  e r ro r s  of t h e  
telemetered infomation,  e r r o r s  of ca l ib ra t ing  t h e  instnrments, and e r r o r s  & 
of processing. The s t a t i s t i c a l  errors of counting pulses  do not exceed 1- 10%. 
The energy spectrum of t h e  p a r t i c l e s ,  however, can be determined with an appreci
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ably  g rea t e r  e r ro r .  

cHAPm VI 

M E A S W E N T  OF THE CONCENTRATION OF CHARGED PARTICLFS 

Section 1. Ianpmuir Probes and Ion Traps 

The essence of t h e  method of probe ana lys i s  cons is t s  of measuring t h e  cur
r en t  of ionized gas p a r t i c l e s  on a conductor ( co l l ec to r )  placed i n  t h e  inves t i 
gated medium. The co l l ec to r  i s  connected with t h e  case of t h e  c a r r i e r  across a 
s u f f i c i e n t l y  l a rge  resis tance,  whose voltage drop i s  recorded by t h e  measuring 
c i r c u i t .  One of t h e  most important conditions of using a probe i s  smallness of 
i t s  surface with respect  t o  t h e  area of t h e  h u l l  of t h e  c a r r i e r  [approximately 
by th ree  orders of magnitude (Bib l . l ) l .  

The stream of p a r t i c l e s  on any body i n  t h e  upper atmosphere, as indicated 
earlier (see  Chapt -11, Sect .2) contains e lec t ron  and i o n  components; depending 
upon t h e  p o t e n t i a l  of t h e  body r e l a t i v e  t o  t h e  plasma (or t o  t h e  capsule), 
e i t h e r  one may predominate subs tan t ia l ly .  In  this connection, t h e  method of 
probe analysis  i s  based on obtaining t h e  dependence of t h e  probe current on i t s  
po ten t i a l ,  which i s  ca l led  t h e  probe cha rac t e r i s t i c .  An analys is  of t h e  probe 
cha rac t e r i s t i c s  permits determining t h e  concentration of charged p a r t i c l e s  
(e lec t rons  o r  ions)  and a number of o ther  parameters of t h e  medium, i n  par t icu
lar t h e  electron temperature T, [based on t h e  s lope of t h e  cha rac t e r i s t i c  curve 
(Bibl.2)]. Devices of this type are known as Iangmuir probes and have been used 
r a the r  widely. Thus, M t h  used a steel cone attached t o  t h e  nose of t h e  rocket 
as a probe (Bibl.1). To lessen  t h e  e lec t ron  photoemission current from t h e  
surface of t h e  probe, which d i s t o r t s  t h e  ana ly t i ca l  results, Japanese researchers 
have used l a t t i c e d  spher ica l  kngmuir probes with a diameter of 2 cm (Bibl.16). 

More widely used are probes with a control led p o t e n t i a l  applied t o  an addi
t i o n a l  gr id ,  placed i n  t h e  p a r t i c l e  pa th  t o  t h e  co l l ec to r .  T h i s  permits a 
b e t t e r  se lec t ion  of t h e  recorded p a r t i c l e s  with respect  t o  t h e  s ign  of t h e  
charge and t o  energy. Inside t h e  probe, an e l e c t r i c  f i e l d  i s  generated which /150 
ensures t o t a l  co l lec t ion  of t h e  charged p a r t i c l e s  t h a t  have passed through t h e  
g r id  on t h e  co l lec tor .  I n  ce r t a in  cases, one more g r id  i s  placed near t h e  col
l e c t o r  which i s  fed with a su f f i c i en t ly  large negative ( r e l a t i v e  t o  t h e  collec
t o r )  po ten t i a l ,  preventing t h e  emission of photoelectrons. Devices of this type 
are known as two- or three-electrode i o n  t r aps .  

The basic problems solved by means of t r a p s  include: determination of 
p a r t i c l e  concentration i n  t h e  s ta t ionaIy  plasma of t h e  upper atmosphere and 
in te rp lane tary  medium, i t s  var ia t ions  i n  time and space under t h e  e f f ec t  of 
various fac tors ,  and measurement of t h e  i n t e n s i t y  of s o f t  corpuscular fluxes. 

Two-electrode t r a p s  f o r  measuring t h e  concentration of pos i t i ve  ions  i n  t h e  
upper atmosphere were used with excel lent  results by K.I.Gringauz, V.V.Bezrukikh 
and V.D.Ozerov (Bibl.6) i n  t h e  Soviet  Union on t h e  t h i r d  a r t i f i c i a l  ea r th  satel
l i t e .  These t r a p s  operated fromMay 15 t o  June 3 ,  1958 i n  daytime a t  heights 
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up t o  1000 km. During this time it was poss ib le  t o  obtain more than 10,000 
measurements of t h e  i o n  concentration local ized i n  space and time (Bibl.4). 

Three-electrode t r a p s  designed t o  measure t h e  concentration of pos i t i ve  
ions and e lec t rons  were  i n s t a l l e d  on a number of space vehic les  including t h e  
unmanned in te rp lane tary  spacecraft  launched i n  t h e  USSR (Bib1.7). 

T h i s  l ed  t o  t h e  discovery of t h e  third, outermost belt  of charged p a r t i c l e s  
(see Fig.1, Chapt .V), permitted measurements of solar corpuscular f luxes  outs ide 
t h e  geomagnetic f i e l d  f o r  t h e  first time, and yielded estimates on t h e  poss ib le  
concentration of in te rp lane tary  ioni%ed gas (Bibl.2, 8). A s  derived from t h e  
measurements on t h e  unmanned in te rp lane tary  Venus probe, t h e  concentration of 
e lec t rons  i n  the  corpuscular f l u x  apparently i s  20 a t  a dis tance of about 
1.9 mi l l ion  kilometers from ea r th  (Bibl.7). The concentration of s ta t ionary  gas 
i n  space at  a dis tance of about 126,000 km m s  a p p r o h a t e l y  1.5 [based on 
measurements by t h e  capsule of t h e  t h i r d  space rocket which photographed t h e  
far s ide  of t h e  moon (Bibl.6)I. 

Similar  equipment was i n s t a l l e d  on rockets  and satellites i n  the  USA and 
Japan (Bibl.10, A6). For example, a f l a t  three-electrode ion  t rap ,  whose outer  
r i d  was attached a t  t h e  l e v e l  of t h e  rocket skin, was used by R.Ye,Bourdo 

r B i b l . 1 ) .  Subsequently, Bridge e t  a l .  (Bib1.11,  12) developed an 
mult igr id  t r ap  known as plasma probe or t r a p  with modulation (Bibl.7 . T h i slmProved 
device contained an addi t iona l  g r id  t o  which a var iab le  voltage was applied, 
which increases  t h e  s e l e c t i v i t y  of t h e  t r a p  and i t s  sens i t i v i ty .  

7 

Fig.l.VI Ver t ica l  Distr ibut ion of Electron ne (or Ion ni ) 
Concentration i n  t h e  Atmosphere at  Heights above 100 km, 

Based on Ihperimental Data. 

Thus, t h e  t rend  i n  t h e  development of probes was t o  make them similar t o  
t h e  analyzers of mass spectrometers (see Chapt.IV). For measuring t h e  concentra
t i o n  of individual  gas components, simple two-stage one-cycle radio-frequency 
mass spectrometers, having a s e n s i t i v i t y  up t o  10 at  a power consumption /151 
of 2 w and a weight of less than 2 kg, have been proposed (Bibl.15). 



It must be remembered t h a t  t he re  are o ther  probe var ian ts  i n  exis tence 
which have not found wide use (Bib1.1)-

The magnitudes of t h e  concentrations subject  t o  measurement a t  a l t i t u d e s  
up t o  20,000 km can be estimated from a summary graph of t h e  v e r t i c a l  d i s t r ibu
t i o n  of free e lec t rons  ne or ions nl i n  t h e  gaseous envelope of t h e  ear th ,  on 
t h e  s ide  i l luminated by t h e  sun a t  a period close t o  maxi" s o l a r  a c t i v i t y  
(Fig.1.m). The launching da tes  of spacecraf t  and geophysical rockets, whose 
da ta  were used by G.I,Gringauz i n  p l o t t i n g  t h e  graph (Bibl.6) are a l s o  indicated 
i n  t h e  diagram. 

Section 2. Charac te r i s t ics  of thEAnaly t ica1  Method 

The cha rac t e r i s t i c s  of t h e  method of measuring by means of t r a p s  are ruled 
by t h e  presence of per turbat ions i n  the  ambient medium, both near t h e  instru
mented capsule and near t h e  t r a p s  themselves which are co-moving with t h e  
plasma. Per turbat ions produced by t h e  presence of bodies were discussed 
earlier (see Chapt.11). There it was shown t h a t  t h e  motion of a body i n  
the  plasma sets up a p o t e n t i a l  determined by t h e  balance of inflowing currents.  
I n  t h e  upper atmosphere (ionosphere), under ordinary conditions, a spher ica l  
capsule should have a s l i g h t  negative po ten t i a l .  

Furthermore, it was noted t h a t  t h e  p a r t i c l e  stream of d i f f e ren t  s ign on /152 
a charged body i s  expressed d i f fe ren t ly :  If t h e  s igns of t h e  p a r t i c l e  and body 
charges coincide, t h e  dependence of t h e  current  on t h e  p o t e n t i a l  has an expo
nen t i a l  character;  otherwise t h e  current depends l i n e a r l y  on t h e  radius  of t h e  
space charge region Rc. It can be shown i n  t h e  l a t t e r  case t h a t  t h e  dependence 
of t h e  current on t h e  p o t e n t i a l  of t h e  body cp i s  p r a c t i c a l l y  l i n e a r  (Bibl.4). 
By following t h e  concepts given elsewhere (Bibl.2, b ) ,  this dependence f o r  a 
spherical  t r a p  can be defined. 

a 6 C 

Fig.2.VI Schematic Drawing of t h e  Flow of Ions Pas t  a Trap 
whose Sheath Po ten t i a l  i s  Equal t o  ( a ) ,  Less than (b) ,  
or Greater than ( c )  t h e  Po ten t i a l  of t h e  Ambient Plasma. 

The current generated by pos i t i ve  ions  i n  t h e  co l l ec to r  c i r c u i t  and 
equal t o  t h e  i o n  current through t h e  sheath of t h e  t rap ,  a t  complete co l lec t ion  
in s ide  the  t rap,  can be wr i t t en  as follows, j u s t  l i k e  t h e  conduction current i n  
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a gas (Bibl.2): 
Ic,i =aenivosqj, (1.VI) 

where a i s  t h e  transmission coef f ic ien t  of t h e  l a t t i c e d  case of t h e  t rap ,  e i s  
t h e  e lec t ron  charge, n l  i s  t h e  concentration of pos i t i ve  s ing ly  charged ions;  
vo i s  t h e  veloci ty  of t h e  t r ap ;  ,soft= sf(cp) i s  t h e  e f f e c t i v e  cross  sec t ion  of 
t h e  t r a p  depending upon i t s  p o t e n t i a l  cp r e l a t i v e  t o  t h e  undisturbed plasma and 
t h e  geometric cross  sec t ion  s of t h e  t r a p  casing. 

Thus, our t ask  reduces t o  determining t h e  dependence of t h e  e f f ec t ive  cross  
sect ion of t h e  t r a p  soffon i t s  p o t e n t i a l  cp, i.e., t o  determining t h e  form of 
t h e  function f(cp). 

The var ia t ion  i n  t h e  character  of motion of pos i t i ve  ions  i n  t h e  upper 
atmosphere close t o  a t r a p  with a va r i a t ion  i n  its p o t e n t i a l  cp i s  s h m  sche
matical ly  i n  Fig.2.VI. I n  t h e  case (Fig.2a.VI) when cp = 0 ( t h e  p o t e n t i a l  of t h e  
t r a p  does not differ f r o m  t h e  p o t e n t i a l  of t h e  undisturbed plasma), a l l  ions  
confined i n  a cyl inder  of a height equal t o  t h e  veloci ty  vo and of a cross  sec
t i o n  equal t o  s w i l l  s t r i k e  t h e  t r a p  sheath i n  u n i t  time. T h i s  case i s  t h e  
simplest  and thus i s  des i rab le  for taking measurements s ince  the  e f f ec t ive  /152 
cross sec t ion  i s  then determined simply as seff= s and t h e  unknown funct ion 
W i l l  be f(cp) = 1. 

Fig.3.K.I Diagram of Motion of an Ion Near a Trap. 

In t h e  presence of a negative p o t e n t i a l  on t h e  t r a p  envelope (cp  < 0) a 
pos i t i ve  space-charge layer i s  created around it. The number of p a r t i c l e s  im
pinging in s ide  t h e  t r a p  increases  i n  comparison with t h e  f irst  case (Fig.2b.VI). 
Consequently, i f  cp < 0, then t h e  quantity seff = sf(cp), and f(cp) > 1. 

In  t h e  presence of a p o s i t i v e  p o t e n t i a l  on t h e  t r a p  casing (cp  > 0) c e r t a i n  
p a r t i c l e s  w i l l  be repulsed b t h e  f i e l d  of t h e  t r a p  and i t s  e f f ec t ive  cross  sec
t i o n  w i l l  decrease (f(cp) < 15. A t  a su f f i c i en t ly  l a rge  p o s i t i v e  p o t e n t i a l  (Pat ,  
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known as t h e  stopping p o t e n t i a l  (Fig.2c.VI), a l l  atmospheric i ons  wi l l  be re
pulsed by t h e  t r a p  and t h e r e  W i l l  be no i o n  current.  In this case, f(cpst ) = 0.  

Iet US assume t h a t  t h e  boundary of t h e  negative space-charge layer ( f o r  
0 5 cp 5 V a t )  i n  t h e  d i r e c t i o n  of t h e  oncoming i o n  flux has a spher ica l  shape as 
shown i n  Fig.3.VI. Iet us w i t e  t h e  l a w  of t h e  conservation of momentum, i n  a 
f i e l d  of c e n t r a l  fo rces  f o r  i ons  at  t h e  boundary of t h e  space-charge l a y e r  of 
rad ius  R, and at  t h e  sur face  of t h e  casing of a t r a p  of rad ius  r, i n  t h e  form of 

voRc sin a0 = v t  r sin at , (2. VI) 

where vo and vt are t h e  v e l o c i t i e s  of t h e  i o n s  a t  t h e  boundary of t h e  undis
turbed zone and a t  t h e  sur face  of t h e  t r a p ;  cyo and at are t h e  angles between 
t h e  ve loc i ty  d i r e c t i o n  of t h e  i o n  and i t s  rad ius  vector (from t h e  center  of t h e  
t r a p )  a t  t h e  surface of t h e  l a y e r  and a t  t h e  sur face  of t h e  t r ap ,  respectively.  

It is apparent from Fig.3.VI t h a t  t h e  condition of an  i o n  s t r i k i n g  t h e  
surface of a t r a p  has t h e  form 

J b

O<a <-. 
t‘ 2 

From eq.(2.VI) and condition (3 .VI )  it follows t h a t  t h e  surface of a t r a p  
w i l l  be s t ruck  only by those  ions  which e n t e r  t h e  space-charge l a y e r  at an 
angle of cyo, determined from t h e  condition 

sin cco g -.U t  r 
voRc 

The p o t e n t i a l  energy of an i o n  a t  any po in t  of t h e  e l e c t r i c  f i e l d  with /154 
ecp. Consequently, using t h e  l a w  of t h e  conservationa p o t e n t i a l  cp i s  equal t o  

of energy w e  can w r i t e  

where mi is t he  mass.of i ons  of t h e  
ous i n  composition. 

It follows from eq.(5.VI) t h a t  

i - t h  group i f  t h e  atmosphere i s  inhomogene

vt = 0 0  (6 .VI)  


Hence, t h e  m a x i ”  value of t h e  
by using eq.(&.VI), as 

angle of incidence c y o m a x  can be rewrit ten,  

The e f f e c t i v e  cross sec t ion  of t h e  t r a p  is 



The form of t h e  unknown funct ion thus  becomes 

I n  t h e  case of equal i ty  of t h e  po ten t i a l s  of t h e  t r a p  and of t h e  plasma 
( c p  = 0) we f ind  from eq.(S.VI), i n  conformity with t h e  qua l i ta t ive  discussions 
given earlier, t h a t  f(cp) = 1. A t  t o t a l  stopping of t h e  oncoming ion  f lux ,  when 

m i  v:t h e  energy of t h e  f i e l d  ecp, i s  equal t o  t h e  energy of t h e  oncoming ion  -
2 ' 

we obtain f(cpst) = 0. Consequently, 

(10.VI)  

I n  accordance with eq.(l.VI) f o r  a pos i t i ve  i o n  current  across t h e  col
l e c t o r  of t he  t r a p  we obtain t h e  f i n a l  expression 

where vi i s  t h e  veloci ty  of t h e  oncoming ion  f l u x  which i s  p r a c t i c a l l y  equal t o  
t h e  veloci ty  of t h e  capsule (or t r a p  attached t o  it) i n  t h e  medium. 

A n  analys is  (Bibl.4) shows t h a t  t h e  l i n e a r  r e l a t i o n  ( l l . V I )  between t h e  /15f! 
current and t h e  p o t e n t i a l  cp i s  not disturbed when cp passes  through zero i n t o  

t h e  region of negative values, as long as t h e  condition R > r e f r  i s  

s a t i s f i e d ,  where ref i s  t h e  e f f e c t i v e  radius  of  t h e  t rap .  

A t  an even g rea t e r  increase i n  negative p o t e n t i a l  of t h e  t rap ,  t h e  effec
t i v e  cross sec t ion  s e r f  at  first increases  rapidly and then markedly s lows  down, 
as follows from eq. (11.~1). 

The described analysis  method i s  based on t h e  use of eq.(ll.VI) f o r  a 
pos i t i ve  ion  current  I,, which i s  ensured by t h e  design features of t h e  t rap .  
The concentration of free e lec t rons  i n  this case i s  estimated by assuming 
n e u t r a l i t y  of t h e  plasma (ne n i ) ,  which i s  va l id  a t  least f o r  t h e  outer  iono
sphere (Bibl.4). 

A s  noted above, t h e  state in which we have cp = 0 i s  t h e  most favorable 
state f o r  measuring t h e  undistorted.concentrationof pos i t i ve  ions i n  the  upper 
atmosphere (ionosphere) . To ensure such a state t h e r e  during t h e  measurements, 
i n  o ther  words, t o  have t h e  p o t e n t i a l  of t h e  t r a p  envelope cpt always pass  
through t h e  p o t e n t i a l  of t h e  plasma cppl during t h e  measurement, b ipolar  voltage 
pulses  of a s u f f i c i e n t l y  high amplitude U are pe r iod ica l ly  fed  t o  t h e  t r a p  
she l l ,  r e l a t i v e  t o  t h e  capsule. Now, t h e  co l lec tor  current I, i s  recorded as 
a funct ion of t h e  voltage U. The obtained recording, known as t h e  i o n  volt-
ampere cha rac t e r i s t i c ,  i s  then analyzed. 
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By analyzing t h e  i o n  volt-ampere c h a r a c t e r i s t i c  we can f i n d  a po in t  where 
cp = cpt - cpPl = 0. In t e rp re t a t ion  of t h e  measurements at  this po in t  i s  t h e  
simplest and most r e l i a b l e .  A second f e a t u r e  of t h e  method has t o  do with t h e  
dependence of t h e  thickness of t h e  space-charge layer on t h e  concentration of 
charged p a r t i c l e s  i n  t h e  ambient medium. 

A ca lcu la t ion  (Bibl.4) shows t h a t  t h e  thickness of t h e  space-charge l a y e r  
i n  t h e  f r o n t  s ec t ion  of a given capsule does not exceed 15 cm even a t  t h e  com
pa ra t ive ly  grea t  heights of t h e  T p e r  atmosphere where t h e  concentration of 
charged p a r t i c l e s  i s  l o w  (n, = 10 ) . A s  a consequence, it i s  poss ib l e  t o  
extend t h e  t r a p s  beyond t h e  space-charge layer of t h e  capsule when taking 
measurements i n  t h e  ionosphere. T h i s  is done by i n s t a l l i n g  them on rods more 
than  1 5  cm long. Obviously, on an  unoriented capsule severa l  t r a p s  must be in
s t a l l e d ,  i n  such a manner t h a t  a t  least one of t hese  will be d i rec ted  forward i n  
the  d i r e c t i o n  of f l i g h t  of t h e  capsule a t  t h e  time of measuring. 

On a decrease i n  t h e  charged p a r t i c l e  concentration, upon passing i n t o  in
te rp lane tary  space, t h e  thickness of t h e  space-charge l a y e r  increases  and 
reaches several meters. A s  a consequence, t h e  tr&ps designed for measuring 

/156 
small concentrations of i n t e rp l ane ta ry  gas cannot be extended beyond t h e  space-
charge region of t h e  capsule and must be attached almost a t  the  l e v e l  of t h e  
capsule skin. 

A t h i r d  c h a r a c t e r i s t i c  feature of measurements by t r a p s  i s  t h e  presence of 
a stray co l l ec to r  cur ren t  T h i s  cur ren t  i s  generated under t h e  e f f e c t  of 
various rad ia t ions  (mainly short-wave s o l a r  r ad ia t ion )  s t r i k i n g  t h e  co l l ec to r .  
Radiations t h a t  cause emission of e lec t rons  from t h e  c o l l e c t o r  produce t h e  posi
t ive component of t h e  s t r a y  current 1,. T h i s  cur ren t  flows i n  t h e  measuring 
c i r c u i t  when access of p o s i t i v e  ions  from t h e  ambient medium t o  t h e  c o l l e c t o r  i s  
t o t a l l y  stopped. Thus, t h e  measured value of t h e  c o l l e c t o r  current I, has two 
bas ic  components and can be w i t t e n  as t h e  sum 

. II' = I , ;  7-IC,* f 

(12.VI) 

The presence of a stray current I,,, and i t s  time-variance subs t an t i a l ly  
reduces t h e  p o s s i b i l i t i e s  of measuring small charged p a r t i c l e  concentrations by 
two-electrode t r aps ,  s ince  t h e  quantity I,, cannot be separated from a back
ground of I,,, * 

To produce t h e  s t r a y  current I,,oi n  trap.s intended f o r  measurements i n  in
te rp lane tary  space, an  add i t iona l  antiphotoelectronic g r i d  i s  introduced. 

Section 3. Equipment f o r  Ionospheric Measurements 

The equipment f o r  measuring t h e  concentration of p o s i t i v e  ions  a t  heights 
up t o  1000 km, as ind ica ted  above, had been i n  successfu l  operation f o r  a long 
time on t h e  t h i r d  a r t i f i c i a l  e a r t h  satel l i te  (Bibl.4). The equipment included 2 
two-electrode t r a p s  i n s t a l l e d  d iamet r ica l ly  opposite on ad jus tab le  rods ( see  
Fig.5.I) of 65 cm length. Each t r a p  had a sphe r i ca l  per fora ted  s h e l l  of a radius 
of r = 5 cm (transmission coe f f i c i en t  of t h e  s h e l l ,  cy = 0.63) and a spher ica l  
hollow co l l ec to r  of a rad ius  of 1.5 cm. The g r i d s  and t h e  co l l ec to r s  of t h e  
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t r a p s  were  made of brass  and w e r e  chromium-plated. The g r ids  (2) (Fig.4.m) of 
both t r a p s  were  connected with t h e  satel l i te  body ( 5 )  across  a res i s tance  of t h e  
order of 10 k i l o h s ,  and t h e  co l l ec to r s  were connected across  a res i s tance  of 
t h e  order of 1megohm. 

To c rea t e  an e l e c t r i c  f i e l d  within t h e  t r aps ,  a p o t e n t i a l  E, = -150 v was 
applied from a spec ia l  b a t t e r y  t o  t h e  co l l ec to r  relative t o  t h e  satell i te body. 
A s  a r e s u l t ,  pos i t i ve  ions  of t h e  plasma having an energy of t h e  order  of one 
electron-volt  w e r e  completely taken LIP by t h e  co l lec tor ,  whereas e lec t rons  with 
an energy below 150 ev were repulsed. 

PTS 
( t e l  e n e t  r y  system) 

Fig.k.VI Block Diagram of Two-Electrode Trap. 

To vary t h e  p o t e n t i a l  of t h e  t r a p  cpt r e l a t i v e  t o  t h e  plasma and t o  make /157 
'p pass  through zero, sawtooth pulses  with an amplitude U varying from +28 t o  
-U+. v ( r e l a t i v e  t o  t h e  s a t e l l i t e  body) were per iodica l ly  (every 2 sec) fed t o  
the  t r aps  from a b ipolar  pulse  generator (7) .  The magnitude of this voltage was 
t ransmit ted over t h e  telemetry s y s t e m .  

The s h e l l  of t h e  t r a p  (2) was i s o l a t e d  by polyfluoroethylene r e s i n  ( 3 )  from 
t h e  tubular  te lescope rod ( 4 )  and t h e  co l l ec to r  (1). 

The stream of charged p a r t i c l e s  s t r i l d n g  t h e  co l l ec to r  c rea tes  a p o t e n t i a l  
difference and a current  i n  the  collector-casing c i r c u i t .  The vo l t a  e drop across  
t h e  res i s tance  of 1megohm i s  t ransmit ted by t h e  cathode follower (67  t o  t h e  
telemetry system. The magnitude of t h e  voltage on t h e  s h e l l  of t h e  t r a p  and i t s  
co l l ec to r  current ,  which are recorded on t h e  ground, made it poss ib le  t o  p l o t  for 
each t r a p  t h e  i o n  volt-ampere c h a r a c t e r i s t i c  corresponding t o  each b ipo la r  
voltage pulse .  

A t  a t r a p  p o t e n t i a l  of 'p = 0 and a p o s i t i v e  i o n  concentration of nl = 
= lo' ~ m - ~ ,the4mag+tude of t h e  co l l ec to r  current  was approximately 3 X lo-' amp
and, a t  nl = 10 cm- , about 5 x lo-' amp. Amplification of t h e  cur ren ts  within 
these  limits was  accomplished by cathode followers with tubes of t h e  6N16B type 

14-1 



(Bibl.4). To broaden t h e  dyna,rnic range of t h e  follower, a diode cu t  off by a 
s p e c i a l  b i a s  was  connected i n t o  t h e  c i r c u i t  p a r a l l e l  t o  t h e  input res i s tance .  
When t h e  co l l ec to r  cur ren t  exceeded amp, t h e  voltage drop across t h e  /l58
input  r e s i s t ance  compensated t h e  voltage of t h e  C bat te ry ,  t h e  diode opened and 
shunted t h e  input  res i s tance ,  reducing t h e  ampl i f ica t ion  f a c t o r  of t h e  cascade. 

During t h e  f l i g h t ,  per iodic  checks were made (every 30 sec) whether t h e  
condition of t o t a l  co l l ec t ion  of i ons  en ter ing  t h e  t r a p  on t h e  co l l ec to r  was 
s a t i s f i e d .  This was done by switching i n t o  t h e  co l l ec to r  c i r c u i t  res i s tances  
se lec ted  so t h a t  t h e  voltage drop across them subs t an t i a l ly  lowered t h e  negative 
voltage across the  co l l ec to r s .  I n  this case, t h e  magnitude of t h e  co l lec t ing  
f i e l d  (between t h e  c o l l e c t o r  and s h e l l  of t h e  t r a p )  a l s o  decreased. The con
stancy of t h e  co l l ec to r  current,  when connecting these  res i s tances ,  was  used as 
c r i t e r i o n  f o r  t o t a l  co l l ec t ion  of t h e  ions.  

Two independent driven sawtooth voltage generators (Bibl.7) were used f o r  
shaping t h e  b ipolar  pulses.  These generators w e r e  t r iggered  by pulses  from an 
asymmetric mul t iv ibra tor  t h a t  generated square pu l ses  with a duration of 
130 msec with a frequency of 0.5 cycles. T h i s  dura t ion  determined t h e  time shift 
i n  t h e  generation of p o s i t i v e  and negative pulses .  The shaped u l se s  were fed 
t o  t h e  g r i d s  of t h e  t r a p s  through t h e  cathode followers (Bibl.l+y. 

Section 4.Work-up of Ion Volt-Ampere Charac te r i s t ics  

The i o n  volt-ampere c h a r a c t e r i s t i c s  of t h e  type I, = f(U) (F'ig.5.VI) are 
p l o t t e d  from t h e  da t a  of t h e  telemetry recordings of t h e  co l l ec to r  currents I, 
at various values of t h e  sawtooth voltage on t h e  t r a p  s h e l l  U = cpt - (PO. 

We note t h a t ,  a t  l a r g e  e lec t ron  cur ren ts  across  t h e  l a t t i c e d  s h e l l s  of t h e  
t r aps ,  it was impossible t o  p l o t  t h e  t o t a l  volt-ampere c h a r a c t e r i s t i c  with a 
sa tu ra t ion  segment, formed a t  a su f f i c i en t ly  l a r g e  p o s i t i v e  p o t e n t i a l  of t h e  
t r a p  s h e l l  as a consequence of complete stopping of t h e  p o s i t i v e  ions.  The 
magnitude of t h e  current along t h e  sa tu ra t ion  segment i s  r a t h e r  high, since it 
i s  equal t o  t h e  s t r ay . cu r ren t  of t h e  co l l ec to r  I, and permits taking this i n t o  
account when analyzing t h e  observations. 

The volt-ampere c h a r a c t e r i s t i c s  can be analyzed t o  obta in  t h e  p o s i t i v e  ion  
concentration ni by two methods (Bibl.4). 

F i r s t  method. The equation of t h e  i o n  volt-ampere c h a r a c t e r i s t i c  when 
measuring t h e  concentration of p o s i t i v e  ions ,  according t o  eqs =( 12. V I )  and ( 1.V I ) ,  
can be wr i t t en  as follows: 

where st = nr2 i s  t h e  cross-sectional a r ea  of a spher ica l  t r a p  of radius r; 

f ( c p )  = 1- 2_e(p i s  a f a c t o r  allowing f o r  t h e  e f f e c t  of t h e  t r a p  p o t e n t i a l  cp on 
Mv0 

t h e  e f f e c t i v e  cross sec t ion  f o r  i ons  of mass M. /159 



It follows from t h e  expression f o r  t h e  c h a r a c t e r i s t i c  [eq.(13.VI)] t h a t ,  
at  t h e  i n s t a n t  t h a t  cp = 0, t h e  measured magnitudes can be used f o r  determining 
t h e  i o n  concentration: 

This cons t i t u t e s  t h e  essence of t h e  first method of i n t e r p r e t i n g  t h e  volt-
ampere cha rac t e r i s t i c s .  

9-0 
Fig.. 5 . V I  Ion Volt-Ampere Charac te r i s t ic  of a Trap I n s t a l.led 

on the  Third S a t e l l i t e  (May 19, 1958, h = 976 krn). 

The i n s t a n t  cp = 0 i s  determined by ca l cu la t ing  t h e  stopping poten t ia lcpSt  
( r e l a t i v e  t o  t h e  undisturbed plasma) and f ind ing  t h e  dece lera t ing  voltage on 
t h e  t r a p  s h e l l  u d  ( r e l a t i v e  t o  t h e  capsule). The la t te r  i s  determined from t h e  
start of t h e  sa tu ra t ion  segment on t h e  t o t a l  i on  volt-ampere cha rac t e r i s t i c .  
The poin t  on t h e  c h a r a c t e r i s t i c  curve with t h e  absc issa  UO = Ud - cplt exac t ly
corresponds t o  t h e  unknown i n s t a n t  at  which t h e  p o t e n t i a l  of t h e  t r a p  relative 
t o  t h e  plasma becomes equal t o  zero, cpt = 0. Actually, by using t h e  previously 
adopted notations,  we can wr i t e  two equa l i t i e s :  

Uo=--cpo ( for q = O )
and (15  

ud =%- 'PO (for q=%) 9 

where 'po i s  t h e  p o t e n t i a l  of t h e  capsule relative t o  t h e  plasma. 

It follows from e q u a l i t i e s  (15.VI) t h a t  

From t h e  current at  this p o i n t  we ca l cu la t e  t h e  concentration of p o s i t i v e  
ions  [see eqs.(lO.VI) and (l&.VI)]. 

We note t h a t ,  i f  t h e  plasma contains p o s i t i v e  i o n s  of d i f f e r e n t  mass, /160 
a ca l cu la t ion  of cpSt  by eq.(lO.VI) must successively take as mi masses of dif
f e r e n t  i o n  groups corresponding t o  t h e  composition of t h e  atmosphere at  a given 
height. However, as mass spectrometer has shown, oxygen ions  predominate i n  t h e  
ea r thcs  ionosphere. The smoothness of t h e  experimental volt-ampere character
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i s t i c s  ( see  for example, Fig.5 .VI)  i n d i c a t e s  a p r a c t i c a l l y  homogeneous ionosphere 
s ince  otherwise sharp breaks i n  t h e  c h a r a c t e r i s t i c  curves, caused by a l t e r n a t e  
stopping of various i o n  groups, would be observed upon a n  increase  i n  t h e  posi
t i v e  p o t e n t i a l  of t h e  traps. It i s  a l s o  necessary t o  bear  i n  mind t h a t  
eq.(lO.vI) i s  rigorously v a l i d  only at  not relatively moderate temperatures of 
t h e  plasma T, when vi vo On a rise i n  t h e  plasma temperature T, as shown by 
ana lys i s  (Bibl.4), t h e  volt-ampere c h a r a c t e r i s t i c  shifts t o  t h e  r i g h t  and moves 
upward, increasing i t s  curvature, s ince  I, inc reases  nonlinearly i n  this case. 
A t  plasma temperatures of t h e  order of thousands of degrees we can use t h e  ap
proximate formula (10.VI). The method of ana lys i s  by t h e  first method can be 
i l l u s t r a t e d  on t h e  basis of t h e  c h a r a c t e r i s t i c  curve shown i n  Fig.5.VI.24Under 
t h e  t es t  conditions ind ica ted  here f o r  oxygen ions  (M = 16 x 1.66 x 10- gm),
eq.(lO.VI) demonstrates t h a t  cpst = 4.5 v. The po in t  where t h e  stopping segment 
begins on t h e  c h a r a c t e r i s t i c  curve is determined by t h e  absc issa  Ud = 9.4 v. 
The magnitude of t h e  voltage across  t h e  t r a p  s h e l l  Uo a t  which i t s  p o t e n t i a l  
with respect t o  an absolu te  value i s  equal t o  t h e  p o t e n t i a l  of t h e  plasma cpp! 
and opposite t o  it i n  sign, i.e., a t  which cp = 0, will be equal - i n  c o n f o m t y  
with eq.(l6.VI) - t o  U, = 9.4 - 4.5 = 4.9 v. From t h e  value of t h e  c o l l e c t o r  
current a t  this po in t  I, = 0 . a  pamp and of t h e  cur ren t  along t h e  sa tu ra t ion  
segment I,,,, = 0.09 vamp we f ind ,  by using eq.(&gVI)23that t h e  ion  concentration 
a t  this po in t  of t h e  upper atmosphere i s  ni = 10 cm . 

Second method. This method i s  based on determining t h e  slope of t h e  volt-
ampere c h a r a c t e r i s t i c  t o  t h e  a x i s  of t h e  absc issa  which, as i s  apparent from 

Fig.S.VI, i s  equal t o  -.	dIC 
dU 

If w e  t ake  i n t o  account t h a t  t h e  p o t e n t i a l  of t h e  objec t  during t h e  time of 
recording t h e  c h a r a c t e r i s t i c  curve (about 0.2 sec )  i s  p r a c t i c a l l y  unchanged 

= const, then  t h e  general  expression f o r  t h e  voltage across  t h e  t r a p  U = cp -- (PO w i l l  show t h a t  dU = dcp. Thus, using eq.(l3.VI) [or eq.(l l .VI)] we f ind  t h a t  

o r  

(18.VI) 


where B = -2e2@ 	 nrz i s  a constant f o r  a t r a p  of t h e  given design, operating /161
Mvo 

i n  a homogeneous plasma and i n s t a l l e d  on a capsule moving i n  t h e  plasma with a 
constant ve loc i ty  vo . 

The second method obviously i s  more universd, s ince  it permits analyzing 
complete i o n  volt-ampere cha rac t e r i s t i c s .  

The first method, however, add i t iona l ly  y i e l d s  t h e  magnitude of t h e  po
t e n t i a l  of t h e  objec t  (PO during measurements, from which t h e  temperature of t h e  
plasma can be estimated. 

The plasma temperature i s  estimated on t h e  a s s u q t i o n  t h a t  t h e  ve loc i ty  
d i s t r i b u t i o n  of e lec t rons  obeys Maxwellts l a w  and t h a t  t h e  plasma i s  neutral .  



Then t h e  plasma temperature, as follows from a determination of t h e  thermal po
t e n t i a l  ( s ee  Chapt.II), i s  given by t h e  r e l a t i o n  

where k i s  t h e  Boltzmann constant. 

For example, at Uo = +2 v and a heigh; $f about a0 Ism where ni = 5 X 

x lo5 ~ m - ~ ,we ob ta in  Te = Ti = T = 7 x 10 K, whereas a t  a height of about 
800 km, where ni = 1.9 x lo” cm-3 and Uo = +6.5 v ( i n  this case, t h e  p o t e n t i a l  
of t h e  capsule i s  (PO = -6.5 v) we already have T = 15,000°K (Bibl.4). 

The t o t a l  e r r o r  of measurement, i n  comparison with t h e  da t a  of t h e  iono
spheric probes does not exceed *25% on the  average. The results obtained i n  
analyzing t h e  c h a r a c t e r i s t i c s  by t h e  first and second methods coincide with an 
accuracy t o  within a f e w  percent (Bibl.4). 

Section 5. Eea-ement of Low Chargzd P a r t i c l e  Concentrations 

A t  P s t a n c e s  from t h e  e a r t h  where t h e  concentration of i ons  i s  so low 
(ni < 10 cm-”) t h a t  t h e  magnitude of t h e  current of t h e  usefu l  s igna l  I, i s  
comparable w i t h  t h e  s t r a y  cur ren ts  I,, measurements become impossible. Further
more, it was previously ind ica ted  t h a t  a t  a low i o n  concentration t h e  p o s i t i v e  
space-charge l a y e r  surrounding t h e  space objec t  becomes so g rea t  (more than 1m) 
t h a t  it i s  d i f f i c u l t  t o  extend t h e  t r a p s  beyond i t s  limits (even a t  t h e  f ron t  
of t h e  objec t )  . 

Therefore t r a p s  designed t o  measure small charged p a r t i c l e  concentrations 
(Fig.6.VI), i n  addi t ion  t o  an external g r i d  (1)and a c o l l e c t o r  (3),  have an 
i n t e r n a l  (photoe lec t r ic )  g r i d  (2) which i s  under a s u f f i c i e n t l y  l a r g e  negative 
po ten t i a l .  The t r a p s  are fastened d i r e c t l y  t o  t h e  sk in  of t h e  space object /162
by m e a n s  of t h e  base (7) with a rubber gasket (8). The g r i d  (1)i s  attached t o  
t h e  aluminum s h e l l  of t h e  t r a p  ( 5 )  over a polyfluoroethylene i n s u l a t o r  (4). The 
connection of a l l  t h r e e  e lec t rodes  of t h e  t r a p  with t h e  measuring c i r c u i t  i s  
accomplished through a i r t i g h t  l eads  (6). 

Below, we w i l l  give t h e  technica l  d a t a  of t h e  three-electrode t r a p s  in
s t a l l e d  on t h e  spher ica l  capsule of t h e  second space rocket launched t o  t h e  moon 
on September 12, 1959 (Bibl.6). The hemispherical ou te r  g r i d  (1)of a rad ius  of 
3 cm was made of n i cke l  wire mesh. The c o l l e c t o r  ( 3 )  i s  a n icke l  d i sk  of 0.4 mm 
thickness of a rad ius  of about 2 cm. The i n s i d e  g r i d  (2) was  f l a t  and made of 
tungsten wire mesh. T h i s  was done because t h e  use of woven g r i d s  ensures g rea t e r  
uniformity of t h e  proximity f i e l d  than  t h a t  of per fora ted  g r ids .  

Similar equipment was i n s t a l l e d  on t h e  Venus probe launched on February 12, 
1961 (Bibl.3). Its most important improvement was an increase  in transmission 
of t h e  i n s i d e  gr id ,  i n  order t o  reduce t h e  c o l l e c t o r  current component generated 
by photoelectronic and secondary emission from this gr id .  

A d i f f e r e n t  number of t r a p s ,  wi th  various o r i en ta t ion  relative t o  t h e  di
rec t ion  of- f l i g h t  and t o  t h e  sun was i n s t a l l e d  on various spacecraft .  For 
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example, on t h e  capsule of t h e  second spacecraf t  t h e  t r a p s  were i n s t a l l e d  a t  t h e  
ve r t i ce s  of a tetrahedron inscr ibed i n  t h e  capsule, so  as t o  ensure measurements 
i n  the  s o l a r  shadow by at  least one t r a p  at  any i n s t a n t  of t i m e  (Bibl.9). 

5 
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Fig.6.VI Diagram of a Three-Electrode Trap. 

The c i r c u i t  f o r  feeding voltage t o  t h e  e lectrodes of t h e  space t r a p  i s  
shown i n  Fig.7a.VI. The electrode p o t e n t i a l s  of t h e  t r a p s  r e l a t i v e  t o  t h e  
capsule of t h e  second spacecraf t  (Bibl .6)  were  as follows: at t h e  co l l ec to r s  
U, = -(60 - 90 v),  on t h e  in s ide  g r ids  U,, = -200 v, and on t h e  outside g r ids  of 
each of t h e  four  t r a p s  U,1 = -10, -5, 0, +15 v, respect ively.  

Fig.7.VI Wiring Diagram (a) and Ion-Current Amplifier (b )  
of a Three-Electrode Trap. 

1 - Outer gr id ,  2 - Inner gr id ,  3 - Collector.  

The amplif iers  for t h e  co l l ec to r  cur ren ts  were designed so as t o  permit 
measurement of cur ren ts  caused both by pos i t i ve  and negative p a r t i c l e s .  I n  /163
t h e  described equipment, t h e  amplifiers measured p o s i t i v e  cur ren ts  from 



to +5 x lo-’ amp and negative cur ren ts  from -1O-l’ t o  -1.5 X lo-’ amp. 

The instantaneous values of t h e  c o l l e c t o r  current of each t r a p  were recorded 
twice every minute. The p r i n c i p a l  wiring diagram of t h e  ampl i f ie r  cascade f o r  
t h e  c o l l e c t o r  cur ren ts  of t h e  t r a p s  i s  shown i n  Fig.7b.VI. The cathode followers 
with a broadened range and t h e  telemetry system of t h e  equipment i n s t a l l e d  on 
t h e  second Soviet spacecraft  (Bibl.S), f o r  ex-le, ensured t h e  p o s s i b i l i t y  of 
recording p o s i t i v e  c o l l e c t o r  cur ren ts  from 10- t o  1.5 X lo-’ a q .  The ins tan t 
aneous values of each c o l l e c t o r  cur ren t  i n  this equipmentwererecorded twice 
every minute. 

An i n t e r p r e t a t i o n  of t h e  measurements bas i ca l ly  amounts t o  an  estimate. 
Let  us examine i t s  p r i n c i p l e s  f o r  t h e  described equipment (Bibl.6). 

The p o t e n t i a l s  of t h e  ou te r  g r i d s  of a l l ’  t r a p s  were d i f f e r e n t ,  i n  order t o  
permit estimating t h e  energy of p a r t i c l e s  s t r i k i n g  t h e  co l l ec to r .  Their magni
tudes were  so se lec ted  t h a t  it was poss ib l e  t o  separa te  cur ren ts  I, generated by 
protons of t h e  in t e rp l ane ta ry  plasma, whose energy i s  of t h e  order of one 
electron-volt ,  from cu r ren t s  generated by t h e  protons of corpuscular f luxes,  
whose energy measures i n  ones and t e n s  of Kev. 

I n  a s t a t iona ry  p l a s m ,  t h e  p o s i t i v e  ( ion)  cur ren t  of t h e  t r a p  with a 
voltage across t h e  outer  g r i d  of Ugl = +15 v should obviously be equal t o  zero, 
and i n  corpuscular f luxes  it should not depend on t h e  p o t e n t i a l  of t h e  ou te r  
g r ids .  I n  this case, i f  t h e  corpuscular f l u x  a c t s  aga ins t  a background of /164
t h e  p o s i t i v e  plasma current,  t h e  p c s i t i v e  cur ren t  of t h e  c o l l e c t o r  I, w i l l  
s l i g h t l y  vary depending upon U , l .  

Low-energy e l ec t rons  are unable t o  overcome t h e  re ta rd ing  f i e l d  between t h e  
outer  and inner  g r ids  of t h e  t r a p s  (UgZ - U,1 = 200 v), bu t  e lec t rons  with an 
energy exceeding 200 ev are a b l e  t o  produce negative c o l l e c t o r  cur ren ts  -I, 
from which it i s  poss ib l e  t o  judge t h e  flux of such e lec t rons .  

When t h e  t r a p  was il luminated by t h e  sun, photoelectrons impinged on t h e  
c o l l e c t o r  from t h e  i n s i d e  g r id .  The magnitude of this s t r a y  photocurrent during 
f l i g h t  could reach values as high as 5 x amp (Bibl.7). Therefore, p lac ing  
t h e  t r a p  i n  t h e  s m ~ sshadow i s  p re fe rab le  f o r  measurements. 

A p o s i t i v e  s t r a y  cur ren t  may be produced by e lec t ron  emission from t h e  
co l l ec to r ,  i r r a d i a t e d  by a f l u x  of s o f t  e lec t rons  with an energy up t o  several 
t e n s  of Kev. Special  i nves t iga t ions  of this e f f e c t  (Bibl.8) showed t h a t  it 
causes a not iceable  decrease i n  t h e  e f f i c i ency  of recording e l ec t rons  by m e a n s  
of three-electrode t r a p s  of t h e  design under consideration. The dependence of 
t h e  r a t i o  of t h e  negative current of t h e  t r a p  c o l l e c t o r  I, t o  t h e  cur ren t  of t h e  
inc ident  flux of e lec t rons  Io at various e lec t ron  energies E i s  shown i n  
Fig.8.VI. The diagram ind ica t e s  t h a t  t h e  average e f f i c i ency’o f  recording an 
e l ec t ron  f l u x  of a n  energy from 0.2 t o  40 Kev is 50% ( i n  t h e  absence of s o l a r  
r a d i a t i o n  and a t  a voltage across  t h e  i n s i d e  g r i d  of U,l = 200 v). The m a x i ”  
energy of recordable e l ec t rons  and protons i s  of t h e  order of several mi l l i on  
electron-volts (Bibl.8) . 

Unoriented capsules, moving along a t r a j ec to ry ,  perform complex r o t a t i o n a l  

14.7 



movements. A s  a consequence, t h e  o r i en ta t ion  of t h e  t r a p s  i n s t a l l e d  on them 
r e l a t i v e  t o  t h e  sun and d i r ec t ion  of f l i g h t  changes continually.  T h i s  causes 
continuous f luc tua t ions  of t h e  co l l ec to r  current  I,. Here, t h e  processing of 
t h e  da ta  from three-electrode t r a p s  i s  done by analyzing t h e  curves envelopes of 
t he  maxjmum and minimum values of t h e  current  I,. The concentration of charged 
p a r t i c l e s ,  generating a co l l ec to r  current  I, of given s ign  and magnitude, was 
calculated (Bib1.5) i n  first approximation, without consideration of t h e  stray 
current I, and t h e  p o t e n t i a l  of t h e  capsule cp. I n  this case, t h e  computational 
formula ( a . V I )  i s  s implif ied and assumes t h e  form of an estimating inequal i ty  

(20.vI) 

where i s  t h e  minimum measurable value of t h e  co l l ec to r  current .  

Fig.8.VI Dependence of Relative Collector Current 
on Electron Ehergy E. 

I n  c e r t a i n  cases (Bibl.5), t h e  i n t e n s i t y  I of t h e  measured corpuscular /165
f l u x  was calculated from eq.(20.VI). For this, t h e  current  I, was expressed as 
t h e  number of s ing ly  charged p a r t i c l e s  passing through t h e  cross sec t ion  of t h e  
t r a p  i n  uni t  time. The computational formula i s  then wr i t ten  as 

(21.VI) 

A s  a result of calculat ion,  we obtain approximate cha rac t e r i s t i c  curves f o r  
t h e  concentration of in te rp lane tary  plasma, f o r  energet ic  e lectrons,  and a l so  
for t h e  i n t e n s i t y  of corpuscular fluxes i n  space. 

For example, during t h e  f l i g h t  of t h e  second spacecraf t  t o  a dis tance of 
more than 330,000 km u n t i l  t h e  capsule impacted on t h e  moon (Bibl.9), t he  
upper (1)(Fig.9.VI) and t h e  lower (2)  limits of t h e  co l l ec to r  currents  i n  t r a p s  
with Ugl equal t o  -10, -5, and 0 v as well as t h e  upper - l imi t  (3) of t h e  cur
r en t s  i n  t h e  t r a p  with U,1 = + l 5  v indicated t h e  presence of almost i d e n t i c a l  
pos i t i ve  co l l ec to r  currents  i n  a l l  t raps .  Consequently, t h e  object passed 
through a f l u x  of pos i t i ve  ions  [as suggested elsewhere (Bibl.S), through a flux 
of solar corpuscular radiat ion]  with energies of more than 15  ev. The i n t e n s i t y  
of t h s  f l u x  corresponding t o  t h e  current  I, = 5 X lo-'' amp proved t o  be of t h e  
order! of 10"cm-2 sec- . 



I n  this lunar  probe, recording of e lec t ron  fluxes of t h e  order of lo’ cmm2
sec-’ with energies exceeding approximately 200 ev continued after having /166 

been i n i t i a t e d  i n  a l l  t r aps  (whose current i s  shown by curve 2s when t h e  capsule 
was more than 10,000 km from t h e  ea r th  (Bibl.9). 

- 1 0I ; I O  amp 

330000 350000 

Fig.9.VI Example of a Recording of Collector Currents 
for Three-Electrode Traps . 

The e r r o r  of t h e  charged p a r t i c l e  fluxes determined by this method i s  of 
t h e  order of measurable magnitudes (Bibl.8). 

Section 6. Modulation Traps 

A s  indicated above, measurements of charged p a r t i c l e  concentrations by mean, 
of t r a p s  a r e  hampered by t h e  presence of a s t r a y  co l l ec to r  current  Iqo. T h i s  
mainly cons t i tu tes  t h e  photocurrent generated on i l luminat ion of t h e  co l l ec to r  
by t h e  sun. The densi ty  of this current was estimated as of t h e  order  of 
lo-’ amp/cm2 (see Chapt .II). The d i r ec t ion  of t h e  photocurrent coincides with 
t h e  d i r ec t ion  of t h e  current  of pos i t i ve  ions  t o  t h e  co l lec tor .  If an antiphoto
e lec t ronic  g r id  i s  used i n  t h e  t rap ,  photoelectrons may a l s o  be emitted from t h e  
lat ter,  which generate an appreciably smaller s t r a y  current  component I& which 
i s  subtracted from t h e  recorded current  of pos i t i ve  ions.  The densi ty  of this 
reverse current ,  according t o  an estimate by other  authors ( B i b l o l l ) ,  may reach 
lo-’ amp/cm2. A t  t h e  same time, the  dens i ty  of t h e  co l l ec to r  current  subject  
t o  measurement a t  a concentration of about 1cme3 amounts t o  only 
- lom4 -/an2. Therefore, i n  designing equipment f o r  measurements i n  in te r 
planetary plasma and f o r  inves t iga t ions  of highly r a re f i ed  p lane tary  atmospheres, 
fu r the r  improvements were made i n  t h e  method of t r a p s  with t h e  purpose of de
creasing t h e  s t r a y  current  1,. T h i s  i s  accomplished by modulating t h e  collec
t o r  current  I, without modulating t h e  stray current‘  I, and by measuring t h e  
var iable  component of t h e  output s igna l  . 

The wiring diagram of a plasma de tec tor  o r  t r a p  with modulation, developed 
by Bridge, Dilworth, et  al. ( B i b l . l l ,  12) i s  shown i n  Fig.lO.VI. A square modu
l a t i n g  voltage with an amplitude Fi, and a frequency of about 1500 cps i s  fed  t o  
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t h e  g r id  (2)  from a spec ia l  generator. The g r i d s  (3)  and (1)are connected with 
t h e  s h e l l  of t h e  capsule and serve as e l e c t r o s t a t i c  sh i e lds  f o r  t h e  modulating 
gr id .  Especially important i s  t h e  screen g r i d  ( 3 )  which revents capaci t ive 
coupling of t h e  modulating g r id  (2)  with t h e  co l l ec to r  (5P . The antiphotoelec
t ron ic  g r id  (4)  i s  under a negative p o t e n t i a l  of 100 - 130 v with respect t o  t h e  
co l l ec to r  (5).  T h i s  voltage i s  time-invariant, f o r  which reason t h e  photoelec
t r o n i c  current  i s  not modulated. 

The casing of t h e  de tec tor  and co l l ec to r  (a rea  about 20 cm”) is made of 
magnesium, and t h e  g r ids  are of tungsten wire with a transmission coef f ic ien t  
of (Y = 0.95, except f o r  t h e  g r id  (4 )  which i s  made of phosphor bronze (Bibl.11). 

Fig.1O.a Diagram of Modulation Trap. 

For a de ta i led  energy ana lys i s  of t h e  recorded p a r t i c l e s ,  t h e  level of t h e  
modulating voltage Eo i s  varied stepwise. I n  t h e  latest version of t h e  modula
t i o n  t r a p  (Bibl.l2), t h e  level of during t h e  measuring cycle l a s t i n g  19 m i n  /167
44- sec i s  varied seven times from zero t o  2300 v, with intermediate values of 
5, 20, 80, 250, 800, and 2300 v (every 2 min 28 sec)  . 

The de tec tor  operates i n  the  following manner: A t  a zero p o t e n t i a l  across 
t h e  g r id  (Eo = 0), protons of a l l  energies pass  t o  t h e  co l lec tor .  When t h e  

amplitude of t h e  modulating voltage exceeds -,2e 
M3. protons of a given energy are 

not passed t o  the  co l lec tor .  Thus, a variable-current s igna l  arises i n  the  
co l l ec to r  c i r c u i t ,  corresponding t o  a l t e rna t ing  penetrat ion and stopping of t h e  
plasma protons. The smaller t h e  energy of t h e  recorded protons, t h e  shor te r  
w i l l  be t h e  durat ion of t h e  s tep  s igna l  at  t h e  output of t h e  t r ap  i n  each 
measuring cycle. 
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The outer  e lec t rons  t h a t  are not re tarded by t h e  gr id  (4 )  at  Eo = 0, and 
a f t e r  t h e i r  accelerat ion by t h e  g r id  (2)  when Eo > 0, produce t h e  constant com
ponent of t h e  co l l ec to r  current.  

The current of  t h e  inner  e lectrons,  emitted under t h e  e f f e c t  of e lectro
magnetic radiat ions and ions  on t h e  c o l l e c t o r  of t h e  detector ,  i s  a l s o  not modu
lated s ince the  f i e l d  of t h e  g r i d  (2) i s  screened by t h e  g r id  ( 3 ) .  

The presence of an ant iphotoelectronic  g r id  (4) i n  t h e  i o n  de tec tor  makes 
it poss ib le  t o  record t h e  f l u x  of energet ic  protons by measuring t h e  constant 
current  from the  co l l ec to r  across  t h e  s h e l l  of t h e  capsule whose p o t e n t i a l  i s  
assumed constant during t h e  mzasuring cycle. Actually, at  a temperature of not 
more than 1mil l ion  degrees ( K)  t h e  e lec t rons  of t h e  outer  plasma cannot over
come t h e  energy barrier of t h e  g r id  (&). Furthermore, t h e  energy of t h e  protons 
i s  determined by t h e  ve loc i ty  of t h e  capsule r a the r  than by t h e  temperature. 

Thus, t he  current flowing across  t h e  co l l ec to r  of t h e  de tec tor  has one con
s t an t  and one var iable  component. The former i s  due t o  t h e  current  of protons /168 
with an energy of E, > eEo and of photoelectrons from t h e  g r i d  ( 4 )  t o  t h e  col
l ec to r ,  w h i l e  t h e - l a t t e r  i s  due t o  t h e  current  of protons with an energy of 
E, < eEo. 

The authors (Bibl.11) note t h a t  t h e  p o t e n t i a l  of t h e  modul2ting g r id  Eo, 
needed for stopping t h e  protons, decreases i n  propofiion t o  cos 8 i f  t h e  beam 
enters  at an angle 8 t o  t h e  axis of t h e  detector .  T h i s  i s  explained by t h e  f a c t  
t h a t  t h e  veloci ty  component i n  t h e  d i r ec t ion  of t h e  f i e l d  depends upon t h e  
angle 8 .  As a consequence, t h e  energy of t h e  protons E, determined from measure
ments by t h e  method under consideration i n  a disordered f l u x  contains an e r r o r  of 

A E p  = E, tdn2  Om, (22.VI) 

where 8, i s  t h e  angle of v i e w  of t h e  de tec tor .  

For a model, f o r  example as t h a t  described by o ther  authors (B ib l . l l ) ,  we 
have tan" 8, = 3. For t h e  very same reason, t h e  s e n s i t i v i t y  of t h e  de tec tor  
depends on the  angle of incidence of t h e  flux t o  t h e  cut-off plane of t h e  re
ceiving apehure ,  and t h e  maximum s e n s i t i v i t y  i s  re ta ined  almost unchanged upon 
def lec t ion  through an angle of up t o  15" i n  a l l  three planes from t h e  ax is  of 
t h e  de tec tor  (Bibl.12). The plane f i e l d  of View of t h e  de tec tor  (Bibl.12) i s  
about 130". Furthermore, it i s  necessary t o  consider t h e  p o s s i b i l i t y  of re
f l e c t i o n  of protons of energy E, > eEo when they s t r i k e  obliquely (Bibl.12). 

The plasma de tec tor  of t h e  above-described design was i n s t a l l e d ,  i n  par t icu
lar, on t h e  Explorer-X ( B i b l o l l ) .  The device was attached so t h a t  t h e  inlet 
aperture  came t o  l i e  on t h e  lateral surface of t h e  satellite. Scanning of space 
was done by ro ta t ing  t h e  capsule. Orientat ion of t h e  de tec tor  i n  this case was 
continuously determined by an o p t i c a l  sensor. 

Two modulating g r ids  were used i n  t h e  de tec tor  i n s t a l l e d  on this satellite. 
A high voltage from a high-voltage modulator was fed  t o  one g r i d  and a low 
voltage from another modulator t o  t h e  o ther  gr id .  When no voltage was fed  t o  
t h e  gr id ,  it was grounded. The block diagram of t h e  plasma de tec tor  system, 



i n s t a l l e d  on Ekplorer-X (Bibl.l2), i s  shown i n  F i  .ll.VI. Measurements of t h e  
constant cur ren t  by a constant-current amplifier 8CCA) and of t h e  va r i ab le  cam
ponent of t h e  c o l l e c t o r  cur ren t  were  accomplished. I n  t h e  lat ter case, t h e  
s igna l ,  coming from t h e  preamplifier PA, passed through t h e  f i l t e r  (1)(double 
T-shaped bridge) tuned t o  t h e  modulation frequency (about Z O O  cps) t o  t h e  end 
amplifier ( A )  and then  t o  t h e  telemetry system RTS as a constant voltage, f luctu
a t i n g  by not more than  0 - 5 v. The l i m i t  of s e n s i t i v i t y  of t h e  variable-current 
amplifier (with respec t  t o  noise) was about 2 X amp, and t h e  sa tu ra t ion  
l i m i t  was approx. lom7amp. When measuring t h e  m o d u l a t e d  s igna l  after t h e  
CCA, t h e  s igna l  was read out d iTec t ly  t o  t h e  RTS. The maxi" s e n s i t i v i t y  of 
t h e  ampl i f ie r  CCA was about 10- amp. 

Fig.ll.VI Block Diagram of Equipment with Mocdat-on Trap. 

Delivery of t h e  modulating voltage t o  t h e  g r i d s  from t h e  low-voltage (4) /169 
and t h e  high-voltage (5) modulators was regulated automatically by means of t h e  
device (2) connecting t h e  f l ip - f lop  generator ( 3 ) .  The antiphotoelectronic 
g r i d  and t h e  e l ec t ron ic s  were fed  from various power sources PS. The weight of 
t he  e n t i r e  equipment of t h e  plasma de tec to r  (without telemetry) was 1.2 kg at a 
power c o n s u q t i o n  of less than 40 mw (Bibl.12). 

To grid 
o f  

e c t r o n e t e r  
t u b e  

Fig.12.VI Diagram of Trap f o r  Measuring t h e  
I n t e n s i t y  of Corpuscular Fluxes. 

Traps f o r  measuring t h e  i n t e n s i t y  of corpuscular fluxes are similar i n  
design t o  modulation t r aps .  Such t r a p s  were first used on t h e  spec ia l ized  
satellites Cosmos-3 and Cosmos-5 (Bibl.3). The p r i n c i p a l  wiring diagram of t h e  
t r a p  f o r  charged p a r t i c l e s  of corpuscular f l uxes  developed by V.V.Krasovskiy 



et  a l .  (Bibl.3) i s  shown i n  Fig.12.VI. The device cons is t s  of an aluminum 
casing (1)housing t h e  metal g r ids  (2), (3),  (4)and t h e  r ing  co l l ec to r  (5). The 
current from t h e  co l l ec to r  t o  t h e  container i s  measured by an electrometer-type 
amplifier. 

The g r ids  (2)  are connected d i r e c t l y  with t h e  casing (1)and serve as /170
e l e c t r o s t a t i c  shields .  Voltages U1 and UZ are fed t o  the  insu la ted  m e t a l  gr ids .  
A constant negative vol tage U1 i s  used f o r  l imi t ing  t h e  energy spectrum of elec
t rons  passine: t o  t h e  co l lec tor .  t o  a magnitude e U 1  ev. I n  t h e  equipment in
s t a l l e d  on these s a t e l l i t e s  (Bibl.3), t he  magnitude of t h e  e lec t ron  energy cut 
off  by this g r id  was 40 ev. 

A pos i t i ve  s tep  voltage Uz i s  supplied t o  t h e  g r i d  (4),which prevents
penetrat ion of protons with an  ever increasing energy i n t o  t h e  t rap .  For ex
ample, i n  the  invest igqted equipment (Bibl.3), this energy increased by four 
s teps  from 0.15 t o  ll Kev (over 3 and 6 Kev). 

The r ing co l l ec to r  ( 5 )  i s  placed i n  t h e  gap of t h e  permanent magnet (6)  
whose f i e l d  prevents e lec t ron  emission from t h e  co l l ec to r  under t h e  e f f e c t  of 
various radiat iohs.  Simultaneously, this magnetic f i e l d  prevents penetrat ion 
of low-energy e lec t rons  (with an ener  less than 5 Kev i n  our example) and ions 
( w i t h  an energy less than 30 ev f o r  Oc"ions) i n t o  t h e  co l lec tor .  

For high-energy ions and electrons,  t h e  e f f ec t ive  s o l i d  angle of t h e  t r a p  
had a magnitude of about one s teradian.  For p a r t i c l e s  moving a t  an angle of 
30" t o  t h e  axis of t h e  t r ap ,  i ts s e n s i t i v i t y  decreased by about 50%. 

The sca le  of t h e  amplifier permitted recording positiv: currents  i s o t r2i c  
within t h e  f i e l d  of view,  i n  t h e  range of 3 x lo5 t o  5 X 10 m ~ - ~ * s e c ~ ' * s t e ~, 
and anisotropic  with a narrow disk- l ike d i s t r i b u t i o n  i n  t h e  range of 3 x 10 t o  
5 x lo' cm-" sec-' ster-l. I n  o ther  var ian ts  of t r aps ,  d i f f e ren t  po ten t i a l s  
t h a t  ensure se l ec t ion  of recordable p a r t i c l e s  w e r e  fed t o  t h e  g r ids  (Bibl.3). 

Thus, t r aps  of this type continuously record t h e  t o t a l  e lec t ron  current 
whose energy exceeds an establ ished threshold and of protons whose threshold of 
recording var ies  stepwise. The i n t e r p r e t a t i o n  of t h e  measurements i s  of an ap
proximate character  and i s  based on previously discussed p r inc ip l e s  (Sect.5 of 
this Chapter). 

CHAPTER V I 1  

MEASTJFENENTS OF ME;TEOR STRFAMS 

Section 1. Meteors and Cosmic Dust 

Bodies of t h e  s o l a r  system invading t h e  ear th 's  atmosphere at  cosmic veloci
t ies  are known as meteors; t h e  smallest are ca l l ed  micrometeors o r  cosmic dus t  
and t h e  l a r g e s t  are ca l led  bolides.  Meteors are divided i n t o  per iodic  and /171 
sporadic, t h e  recurrence of t h e  la t ter  being appreciably greater .  



-- 

The bodies of meteor material f a l l i n g  on t h e  e a r t h  are known as meteorites.  
Their number reaches severa l  thousands a year, and t h e  mass of t h e  l a r g e s t  ever 
recorded was 100 tons  ( t o t a l  mass of t h e  fragments of t h e  Sikhote-Alin meteor
i t e ) .  

The ve loc i ty  at  which meteors e n t e r  t h e  atmosphere i s  about 10 - 70 km/sec 
and depends on t h e  d i r e c t i o n  of t h e  meteor wi th  respect t o  t h e  ea r th .  

The average recurrence of meteors en ter ing  t h e  e a r t h t s  atmosphere during a 
&-hour per iod  rap id ly  increases  as t h e i r  mass decreases (Table l.VI1). 

RECURRENCE OF METEx)Rs OF VARIOUS MASSES 

-~ 

Met hod 
- ~ - - .___ 

I.:xtrapol a t i o n  

I’hotograpliic and r a d a r  

. . =  . 

Extrapol a t i o n  

-

500-1 00 300 
100-10 2500 
10-1 
1-0.1 


I 
100-10 106 
10-1 3 .Gx 107 
1-0.1 1.9x108 
0.1-0.01 3.3~109 
0.01-0.001 6.5x1010 


10-9-10-13 1014 
]0-13-10-17 10’8 

Calculations (Bibl.10) show t h a t  p a r t i c l e s  of meteoric material w i t h  a dia
meter below 0.25 p shsuld be absent i n  meteor streams s ince  they are repulsed 
beyond t h e  limits of t h e  s o l a r  system by l i g h t  pressure.  Micrometeors (or dus t )  
measuring 0.25 - 1 c1 have t h e  g r e a t e s t  recurrence (about 99%). 

According t o  inves t iga t ions  by a number of authors, t h e  quantity of meteoric 
matter f a l l i n g  on t h e  e a r t h t s  surface p e r  day i s  from & t o  s eve ra l  thousands 
of tons,  which corresponds t o  an  energy of a t  least 13” erg  applied t o  t h e  
ear th .  However, t h e  thickness ogf t h e  meteorite depos i t  on t h e  e a r t h  during t h e  
e n t i r e  geological per iod  ( 2  X 10 years) does not exceed 2 m (Bibl.10). 

The average 3.F a t i a l  P n s i t y  of meteor matter near -the e a r t h  i s  estimated 
t o  be - 10- gm/cm (Bibl.5). The charac te r  of t h e  i n t e r a c t i o n  of a 
meteor with the  atmosphere l a r g e l y  depends on i t s  s i ze .  Col l i s ions  with a i r  /172 
molecules *art momentum and energy t o  it. This l eads  t o  a dece lera t ion  and 
burn-up of t h e  meteor. Small bodies (of mass less t h a t  lo-’ gm), characterized 
by a r e l a t i v e l y  l a rge  sur face  area, are r ap id ly  decelerated and a l l  of t h e  gener
a ted  energy i s  expended f o r  r ad ia t ion . ’  For a long time, these  remain suspended 
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i n  t h e  upper atmosphere as cosmic dus t  and then  sett le out on t h e  ea r th .  Mix ing
of dus t  of cosmic and terrestrial  o r i g i n  occurs a t  a height of 80 - 90 Jsm 
(Bibl.10). Large p a r t i c l e s  are decelerated appreciably less. 

Meteors whose mass exceeds lo-’ gm are vaporized (burned up) at  heights 
below 160 - 120 km, a t  a temperature of 2000 - 3000’K. Dissociation of t h e  
vaporized molecules l eads  t o  an add i t iona l  i on iza t ion  of t h e  atmosphere along 
t h e  meteor t ra i l .  A s  t h e  result, meteors of t h e  masses indica ted  i n  Table 1 . V I I  
can be observed from t h e  e a r t h  by photography and radar. P a r t i c l e s  whose mass 
is  less than t o  gm are Seen a t  n ight  from t h e  e a r t h  by t h e  unaided 
eye, and p a r t i c l e s  with a m a s s  more than 1 gm are able t o  reach t h e  earth’s 
sur face  (Bibl.2). 

W e  note t h a t  observations of t h e  charac te r  of meteor t ra i l s  and t h e i r  
s h i f t i n g  permit i n d i r e c t  soundings of t h e  atmosphere a t  heights of 80 - 120 km, 
t o  obta in  information on winds, turbulence, and dens i ty  of t h e  upper atmosphere. 
Some da ta  on cosmic dus t  can be obtained by astronomic methods ( tw i l igh t  ob
serva t ions) .  

Direct measurements of meteor streams by means of equipment i n s t a l l e d  on 
rocket and satel l i te  capsules ind ica t e  a l a r g e  s c a t t e r i n g  of t h e  measured in
t e n s i t i e s  of meteor streams. Figure 1 . V I I  shows the  dependence of t h e  frequency 
of recorded impacts N on t h e  height above t h e  earth’s surface,  based on t h e  da t a  
of geophysical rockets of t h e  USSR (1- 3 )  rockets of t h e  USA (4- 9 ) ,  third 
Russian s a t e l l i t e  (10, ll), Explorer-I (12) and Vanguard 111 (13), second space
c r a f t  (a),third spacecraft  (15), Pioneer-1 (16) and Explorer-IV (17). A l l  
da ta  used i n  constructing Fig.l.VI1 have been reduced t o  equal s e n s i t i v i t y  of 
t h e  equipment m m i n  = 10- gm with respect t o  N(m) = m-l, where m i s  t h e  m a s s  of 
t h e  meteor ( B i b l . 1 1 ) .  The recorded frequency of impacts N i s  r e fe r r ed  t o  t h e  
average height f o r  each case of measuring. 

It i s  apparent from these  da t a  t h a t  c lose  t o  t h e  e a r t h  ( h  = 100 - 300 km)
t he re  i s  a zone of high density of dust p a r t i c l e s .  A t  heights of h = 400 
- 2000 km, t h e  frequency of impacts N i s  about impacts-m-” *sec-’. Measure
ments a t  s ign i f i can t  d i s tances  from t h e  e a r t h  ( h  > lo” km) are characterized by 
a l a r g e  standard devia t ion  of t h e  obtained results: The equipment i n s t a l l e d

-1
on 

t h e  Fkplorer-VI and Pioneer-1 gave values of 5 X and 4 X m-’ sec  
w h i l e  those recorded on t h e  second and third space rockets yielded 9 X /i73 
and m-2 sec-’ , respec t ive ly  ( f o r  m = lo-’ gm). A t  400 - 2000 km, sporadic 
increases  i n  the  frequency of impacts N by one order of magnitude and more were 
noted (up t o  IiL m-2 sec-l on t h e  t h i r d  satell i te) .  

It was assumed i n  various ca l cu la t ions  (Bibl.17) t h a t  t h e  i n t e n s i t y  of t h e  
stream of p a r t i c l e s  wi th  mass gm i s  at  least lo-’ m-2 sec-l and d t h  m a s s  

gm, at least m-2 sec-l . 
Meteor streams are studied t o  evaluate t h e i r  e f f e c t  on t h e  r e l i a b i l i t y  of 

a l l  types of equipment during f l i g h t  and t o  e luc ida te  t h e  r o l e  of meteors i n  
various geophysical processes ( ion iza t ion ,  change i n  atmospheric composition, 
e tc . )  and i n  t h e  s o l a r  system. 
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Fig.l.VI1 Frequency of Col l is ions with Meteors N as a 
Function of t h e  Height h above t h e  Earth's Surface, 

according t o  w e r i m e n t a l  Data. 

Section 2. Equipment f o r  Recordinn Meteor P a r t i c l e s  

Many d i f f e ren t  methods, based on t h e  use of various co l l i s ion  e f fec ts ,  have 
been proposed and employed t o  measure t h e  number of co l l i s ions  of a ce r t a in  
surface with meteor p a r t i c l e s .  For example, t h e  following have been recorded: 
glow produced i n  Plexiglas;  change i n  conductivity of a t h i n  wire mesh [diameter 
10 p on Ekplorer-111 (Bibl.8)l t o r n  by impact of a meteor; change i n  i l l u m i n a  Ll& 
t i o n  of a cadmium-sulfide photores i s tor  whose photosensi t ive surface i s  covered 
by a sh ie ld  of Mylar film coated with a vacuum-de os i t ed  aluminum laye r  which i s  
ruptured under t h e  +ac t  of micrometeors (Bibl.3 7 , e tc .  

A special ized satel l i te  of t h e  USA (S = 55, o r  Ehplorer-XIII), developed 
espec ia l ly  f o r  inves t iga t ions  of micrometeor streams,was equipped with gas-
f i l l e d  c e l l s  as t h e  main sensors (Bibl.3). The c e l l s  were made of a copper 
a l l o y  with beryllium i n  t h e  form of cylinders.  The f l a t  p a r t  of t h e  c e l l  
measured 50.8 x 330 mm. The thickness of t h e  w a l l s  was d i f f e red  f o r  d i f f e ren t  
groups of sensors and var ied within 0.025 - 0.125 m. The c e l l s  were f i l l e d  
with nitrogen and helium. When t h e  c e l l s  were pierced by micrometeors, t h e  gas 
escaped and threw a baroswitch mounted t o  t h e  end of each c e l l .  Information on 
t r igger ing  of t h e  switch of each c e l l  was transmitted by telemetry. The c e l l s  
were i n s t a l l e d  i n  rows on t h e  surface of t h e  sa t e l l i t e ;w i th  t h e  convex por t ion  
outward. 

The most valuable information, however, can be obtained by p iezoe lec t r ic  
sensors ( c r y s t a l  microphones) whose ac t ion  i s  based on recording t h e  reac t ive  
pulse generated when a meteor s t r i k e s  the  obstacle.  Invest igat ions have shown 
t h a t  co l l i s ions  of meteor p a r t i c l e s  with a s o l i d  wall have t h e  character  of an 
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explosion because t h e  energy released i s  g rea t e r  than t h e  binding energy of t h e  
c r y s t a l  l a t t i c e .  According t o  ca lcu la t ions  (Bibl.l.4), t h e  depth of penetrat ion 
of a small meteor p a r t i c l e  i s  of t h e  order of i t s  radius r. If we assume t h e  
funnel, formed as a result of t h e  explosion of t h e  p a r t i c l e  upon impact, t o  be 
of hemispherical shape, we can f i n d  t h e  dependence of t h e  funnel radius  R on t h e  

2
p a r t i c l e  energy E = 

Provided t h a t  t h e  energy E of t h e  p a r t i c l e  i s  expended only f o r  i t s  own 
melting and f o r  t h a t  of a c e r t a i n  volume of t h e  obstacle,  we can write t h e  equa
t i o n  of energy balance i n  t h e  following form: 

where M i s  the  mass of t h e  obs tac le  melted i n  the  volume of t h e  funnel, P, and 
Po are t h e  energy dens i t i e s  needed t o  m e l t  t h e  substance of t h e  meteor and 
obstacle.  

Provided t h a t  P, N Po = P and m < M, it follows from eq.(l.VII) t h a t  

?nu2M Z -
2P (2.VII) 

Subst i tut ing i n t o  eq.(2.VII) t h e  densi ty  of t h e  obstacle  substance p and 
t h e  radius  of a hemispherical funnel  R, we obtain 

Hence it f o l l o w s  t h a t  

3 mu2
R ( m ,  v )  = 1/ G~P- 2 ,  

For example,4foy aluminum we have P = 2.7 gm/cm3, Po = Id" erg/gm (Bibl.l.4) 
and R E  2.8 x 10- n. 

This r e l a t i o n  forms t h e  b a s i s  of one of t h e  methods of estimating t h e  
energy of meteors i n  rocket experiments, when t h e  radius  of t h e  funnel  formed i n  
an aluminum or copper p l a t e  i s  measured and t h e  number of p a r t i c l e s  i s  counted 
from t h e  number of funnels present .  

The character  of t h e  dependence of t h e  magnitude of t h e  reac t ive  momentum I 
created i n  t h e  obstacle  upon explosion, on t h e  meteor energy E has been s tudied 
with i n s u f f i c i e n t  r e l i a b i l i t y .  I n  agreement with t h e  inves t iga t ions  by K.P. 
Stanyukovich (Bib1 .a)  t h e  exis tence of a d i r e c t  p ropor t iona l i ty  i s  proposed 

/ = A E ,  (5 V I 1 1  

where A is  t h e  propor t iona l i ty  f a c t o r  depending on t h e  energy dens i t i e s  P, and 
Po, on t h e  angular d i s t r i b u t i o n  of t h e  ejected mass, and on t h e  degree of in
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s t a b i l i t y  of t h e  process. 

From other  i nves t iga t ions  (Bibl.9, 16)  fo l low pos tu la ted  dependences of t h e  
type I - mv"" or mv. Consequently, t h e  use of a p i e z o e l e c t r i c  transducer, 
mounted t o  t h e  receiving p l a t e  does not  permit a d i r e c t  measurement of t h e  m a s s  
m o r  t he  ve loc i ty  v of a given meteor ( s ince  t h e  momentum of impact of t h e  par
t i c l e  against  t h e  receiving p l a t e  i s  appreciably smaller than  t h e  instantaneous
l y  following r eac t ive  momentum I caused by e j e c t i o n  of a c e r t a i n  mass of t h e  
transducer upon explosion). The measurements can be i n t e r p r e t e d  on t h e  bas i s  of 
a dependence of t h e  type I - m vk ,where k i s  a c e r t a i n  coe f f i c i en t  subjec t  t o  
refinement. 

The sensors regc t ing  t o  t h e  r eac t ive  momentum are known as b a l l i s t i c  sensors 
o r  pickups. 

A b a l l i s t i c  sensor, i n  addi t ion  t o  a transducer,  contains elements of mass 
and e l a s t i c i t y .  Bending of t h e  e l a s t i c  element causes deformation of t h e  piezo
e l e c t r i c  transducers, which generates an. e l e c t r i c  pu lse .  The mass element 
should have a low e l a s t i c i t y  so t h a t  t h e  o s c i l l a t i o n s  are damped within a time 
shor t e r  than t h e  t i m e  constant of t h e  recording c i r c u i t .  

To have t h e  operating conditions of t h e  b a l l i s t i c  sensor depend l i t t l e  on 
where t h e  p a r t i c l e  s t r i k e s  t h e  mass element, it i s  necessary t o  use a suf f ic ien t 
l y  l a rge  number of quartz c r y s t a l  transducers attached along t h e  perimeter of 
t h e  mass element and connected i n  p a r a l l e l  (Bibl.4). 

The qua l i ty  of t h e  p i ezoe lec t r i c  transducers i s  characterized by t h e  /176
p iezoe lec t r i c  modulus d. The p i ezoe lec t r i c  modulus i s  t h e  propor t iona l i ty  
f a c t o r  between t h e  charges q generated a t  t h e  f aces  perpendicular t o  t h e  e l e c t r i c  
axis of t h e  c r y s t a l  and t h e  s t r a i n  fo rce  F. If t h e  p i ezoe lec t r i c  transducer has 
t h e  shape of a para l le lep iped  and a homogeneous t e n s i l e  fo rce  Fx a c t s  on it 
along t h e  e l e c t r i c  axis x ( longi tudina l  p i ezoe lec t r i c  e f f e c t ) ,  then t h e  magni
tude of t h e  cha rges - in  conformity with t h e  theory developed f o r  quartz (Bibl. lS),  
w i l l  be 

q =F,d. (6.VII) 

The magnitude of t h e  charges i n  this case, as ind ica ted  by eq.(6.VII), does 
not depend on t h e  geometry of t h e  transducer. 

Under t h e  e f f e c t  of a t e n s i l e  force  ac t ing  along t h e  mechanical y-axis of 
t h e  c r y s t a l  ( t ransverse  p i ezoe lec t r i c  e f f e c t ) ,  t h e  charges created on these  
f aces  are 

b
q = - F y  - d ,  (7.VII)a 

where b and a are t h e  width and thickness of t h e  transducer,  respectively.  

The negative s i g n  i n  eq.(7.VII) shows t h a t  t h e  s ign  of t h e  charges i s  oppo
site, i n  comparison with t h e  longi tudina l  p i ezoe lec t r i c  e f f e c t .  

Thus, i n  t h e  t ransverse  p i ezoe lec t r i c  e f f e c t  t h e  s e n s i t i v i t y  of t h e  trans
ducer can be increased by t h e  r a t i o  -.	b 

a 
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I n  t h e  absence of leakage, t h e  charges q are re ta ined  during t h e  e n t i r e  
t i m e  of t h e  e f f e c t  of t h e  fo rce  F. Consequently, t o  ob ta in  t h e  maximum charge, 
a high degree of i n su la t ion  of t h e  quartz c r y s t a l  transducer i s  required. 

An explosion of meteor p a r t i c l e s  on t h e  sur face  of t h e  mass element of t h e  
b a l l i s t i c  sensor causes damped o s c i l h t i o n s  of t h e  lat ter with a frequency u) 
equal t o  t h e  frequency of t h e  na tu ra l  o s c i l l a t i o n s  of t h e  e n t i r e  transducer. 
The transducer w i l l  be subjec t  t o  a va r i ab le  force  with a decreasing amplitude. 
Under t h e  e f f e c t  of a va r i ab le  fo rce  on t h e  p i ezoe lec t r i c  transducer 

F (f)=Fllle-ilfsin of, (8.VII) 

charges q w i l l  appear on i t s  faces  which.are determined by t h e  r e l a t i o n  

q = qnle-nt sin of, ( 9  JII) 

where F, and qmare t h e  amplitude values of t h e  f o r c e  and charge, respectively; 
n i s  t h e  damping f ac to r .  

The c u r r e n t 5  discharging from t h e  transducer through t h e  leakage res i s tance  
and input r e s i s t ance  of t h e  measuring c i r c u i t  &, i s  determined by t h e  formula /17Z 

I = - =  
d t  

. d q  q,tle-12t(n  sin of + cos of). (10. V I I )  

On using t h e  t ransverse  p i ezoe lec t r i c  e f f e c t ,  when eq.(?.VII) i s  s a t i s f i e d ,  
we obta in  

b
i =dFv -e-"' (nsin of + COS of) . ( 1 1 . V I I )a 

The voltage taken from t h e  load of t h e  wiring c i r c u i t  i s  

b
u = - F

d 
Y max --e-"' ( n  sin of +cos of), (12. V I I )a 

where Z i s  t h e  impedance of t h e  input of t h e  measuring c i r c u i t s .  Thus, t h e  
amplitude of t h e  measured voltage will depend l i n e a r l y  on t h e  a p p a e d  fo rce  
F y m a x  and W i l l  decrease with t h e  damping f a c t o r  n, t h e  quan t i t i e s  F,,.. and n 
being inverse ly  propor t iona l  t o  t h e  e l a s t i c i t y  of t h e  spr ings  t o  which t h e  mass 
element of t h e  b a l l i s t i c  sensor i s  attached. 

To keep t h e  dead time of t h e  sensor s m a l l  and t o  prevent spurious damped 
pulses  from being recorded by t h e  measuring c i r c u i t ,  it i s  necessary t o  ensure 
a s u f f i c i e n t l y  rapid damping of t h e  o s c i l l a t i o n s  ( t h e  spr ings  and transducers 
should be made of a material wi th  a l o w  modulus of e l a s t i c i t y  e ) .  

Crystals of Rochelle salt  NaKC4&06 4H20 have t h e  highest  p i ezoe lec t r i c  
modulus (d = 3 x 10'' C/kg); however, they have low mechanical s t r eng th  and high 
hygroscopicity, which i n t e r f e r e s  wi th  t h e i r  p r a c t i c a l  app l i ca t ion  (Bibl.15) 

The next bes t  p i ezoe lec t r i c  transducers are barium t i t a n a t e  B a E 0 3  and am
monium phosphate NH4H2P04. Bar ium titanate has a p i ezoe lec t r i c  modulus of d = 
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= 1.07 x IO-' C/kg and a modulus of e l a s t i c i t y  of 8 = 1.15 X Id2 kg/m2 
(Bibl.15) w h i l e  t&e values f o r  ammonium phosphate are d N 3 x 10-l' C/kg and 
8 E 5 x Id"kg/m (Bibl.13). These p i ezoe lec t r i c  transducers have a s u f f i c i e n t  
water res i s tance  and s t a b i l i t y  of t h e  p i ezoe lec t r i c  modulus i n  a wide range of 
teqeratures; however, t h e  smaller e l a s t i c i t y  of amnonium phosphate permits its 
wider use i n  sensors where t h e  transducer i s  attached t o  spr ings and should p lay  
t h e  role of a damping element. 

The equivalent c i r c u i t  of a p iezoe lec t r ic  transducer (Fig.2.VII) contains a 
transducer capacitance Co, input  capacitance of t h e  measuring c i r c u i t  C i n ,  
t ransducer res i s tances  (volume and surface)  Ro, and an input res i s tance  of t h e  
measuring c i r c u i t  hn. The quantity of e l e c t r i c i t y  produced by t h e  p iezoe lec t r ic  
transducer at  t h e  i n s t a n t  of applying a constant force  F i s  

90 =uo (Co +e;"). 
The time rate of change of t h e  output voltage under t h e  continuous e f f ec t  /178

of t h e  force  F Will be determined by t h e  time constant of t h e  transducer c i r c u i t ,  
namely, 

where C = Co + Ci, and R = R o + R i n .  
R 0 - h  n 

U ( t >By assigning a measurable value of t h e  r a t i o  -during t h e  time t, 
UO 

counted from t h e  moment of applying t h e  force,  w e  can determine t h e  necessary 
parameters R and C. The value of Ro, however, should be s u f f i c i e n t l y  l a rge  t o  
reduce t h e  charge leakage from t h e  sensor, so t h a t  t h e  inequal i ty  & 9 R, i s  
usual ly  s a t i s f i e d .  

Fig.2.VII Equivalent Ci rcu i t  of P iezoe lec t r ic  Transducer. 

Fig.3.VII Block Diagram of Equipment f o r  
Measuring Micrometeors. 
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When measuring shor t  pulses,  t h e  value of RC should be small;.however, t h e  
requirement of a su f f i c i en t ly  l a rge  value of RO ( f o r  insu la t ion)  i s  retained. 
A s  a consequence, t he re  i s  a tendency t o  make t h e  self-capacitance of t h e  sensor 
increasingly smaller, f o r  which purpose i t s  area i s  a l s o  made smaller. If it 
becomes necessary t o  increase t h e  receiving surface of t h e  equipment, several 
sensors connected i n  p a r a l l e l  are used. 

The block diagram of t h e  Soviet equipment f o r  inves t iga t ing  micrometeors 
on rockets and satell i tes (Bib1.1,  7) i s  shown i n  Fig.3.VII. Here, four  ballis
t i c  sensors S are used, whose s igna l s  are recorded over four  channels (ranges) 
of d i f f e ren t  s e n s i t i v i t y .  The s igna l  from each sensor i s  f ed  t o  ind iv idua l  
amplifiers A which are elements of t h e  adder c i r c u i t s .  

Pulse height s e l ec t ion  i s  accomplished by threshold counting c i r c u i t s ,  
which are switched on after passage of various number of s tages  of t h e  amplif ier  
A. The s igna l  corresponding t o  t h e  first range i s  taken d i r e c t l y  from two 
sensors across the  resistance-coupled adder c i r c u i t  AC. The number of pu lses

/179 
i n  each amplitude range i s  counted by m e a n s  of t h e  f l ip-f lops T. 

3 ? I 3 

Fig.4.VII Diagram of t h e  B a l l i s t i c  Sensor. 

So t h a t  repeated operation of t h e  counting c i r c u i t  under t h e  e f f e c t  of 
damped osc i l l a t ions  of t h e  strong s igna l  of t h e  b a l l i s t i c  sensor i s  eliminated, 
a t r i p  re lay  (monostable mul t iv ibra tor )  TR with a dead t i m e  of 0.06 - 0.08 sec 
i s  i n s t a l l e d  a t  t h e  i q u t  of each c i r c u i t .  A s  a consequence, t h e  dead time of 
the  counting c i r c u i t  7 i s  high, and i t s  resolving power 1/7 i s  only 12  - 17 im
pac t s  p e r  sec (Bibl.7). This counting rate, as follows f r o m t h e  cha rac t e r i s t i c s  
of t he  recurrence of meteors (see Sect .1 of this Chapter) i s  su f f i c i en t .  The 
TR c i r c u i t s  simultaneously a c t  as threshold devices. 

The counting c i r c u i t  of t h e  most s ens i t i ve  ( four th)  range has six f l i p -
f lops  and performs sca l ing  t o  32. The t r i g g e r  pu lse  of t h e  t r i p  re lay  of this. 
range i s  taken from t h e  last s tage  of t h e  amplifier and permits recordin of t h e  
sensor s igna ls  of a magnitude of 0.001 v and higher, without l imi t a t ion  tBibl.7). 

The output c i r c u i t  OC which i s  fed  with t h e  outputs of a l l  four  ranges, i s  
a resistance-coupled adder with a r a t i o  of 1:2:4:8. 

The b a l l i s t i c  sensor used i n  this equipment i s  a p l a t e  (1)(Fig.4.Vl-I) 
mounted on supports by means of spr ings ( 3 ) .  The lower por t ion  of t h e  p l a t e  
c a r r i e s  four  armnonixan phosphate p i ezoe lec t r i c  elements (2) The eigenfrequency 
of t h e  sensors i s  about 4.00 cps (Bibl.7). The equipment i s  ab le  t o  record 
meteor p a r t i c l e s  with a mass up t o  l b i l l i o n t h  of a gram moving at a ve loc i ty  
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of about 40 h / h r  (Bibl.1). 

The equipment with p i ezoe lec t r i c  transducers,  used i n  t h e  USA, i s  designed 
along t h e  same p r i n c i p l e s  (Bibl.3). The bas ic  d i f fe rence  of t h e  sensor l i e s  i n  
t h e  use of only one transducer (microphone) att2ched a t  t h e  center  of t h e  /180
aluminum sensor sur face  wi th  an area of 0.038 m mounted on rubber shock 
absorbers. 

The instrument i n s t a l l e d  on t h e  F q l o r e r - I  had one recording channel w i t h  a 
l i n e a r  dependence of t h e  recorded s igna l  amplitude on t h e  momentum of t h e  par
t i c l e  (from lo-” t o  50 dyne/sec). 

The instrument i n s t a l l e d  on t h e  luna r  probe Pioneer-I had two channels 
tuned t o  d i f f e r e n t  levels of pu lse  recording. These l e v e l s  were  obtained by 
tapping one channel after t h e  second s tage  of t h e  amplifier and t h e  second chan
n e l  after t h e  t h i r d  s tage  (Bibl.16). 

Section 3. Measuring Procedure 

Equipment with b a l l i s t i c  sensors permits measuring t h e  t o t a l  stream of 
meteor p a r t i c l e s  and determining, wi th in  a l imi t ed  range, t h e  spectrum of re
corded pulses.  On t h e  b a s i s  of t h e  la t ter ,  it i s  poss ib l e  t o  estimate t h e  dis
t r i b u t i o n  of p a r t i c l e s  by energy and t o  ca l cu la t e  t h e i r  mass i f  a ce r t a in  f l i g h t  
ve loc i ty  of t h e  p a r t i c l e s  i s  given. Equipment of this type was widely used i n  
various modifications, both on geophysical rockets and on spacecraft  ( see  
Fig.l.VII). B a l l i s t i c  sensors, combined i n  g r o q s ,  were i n s t a l l e d  d i r e c t l y  on 
t h e  s h e l l  of t h e  capsule. 

I n  t h e  first rocket f l i g h t s ,  it was found t h a t  a t  low thresholds of record
i n g  pulses  i n  t h e  h igh-sens i t iv i ty  channel, p a r t i c l e s  impinging not only d i rec t 
l y  on t h e  sensing surface but a l s o  on t h e  casing of t h e  sensor or on components 
of t h e  rocket were recorded (Bibl.11). Therefore, i n  l a t e r  equipment t h e  re
cording thresholds were increased so as t o  reduce these  e f f e c t s .  Thus, i n  t h e  
equipment i n s t a l l e d  on Soviet spacecraft  t h e  h igh-sens i t iv i ty  range was adjusted 
t o  count t he  pulses  of t h e  sensor with an amplitude of a t  least 1mv. Taking 
i n t o  account t h a t  t h e  recorded pulse  i s  propor t iona l  t o  the  energy of t h e  par t 
i c l e s ,  then a t  t h e i r  ve loc i ty  of v = 40 h / s e c  this corresponds t o  recording 
p a r t i c l e s  with a mass of a t  l e a s t  lo-’ t o  gm. The medium-sensitivity chan
n e l  was adjusted t o  record p a r t i c l e s  with a mass o f7a t  least t o  low7 gm, 
and t h e  low-sensit ivity channel of a t  least 2 x 10- gm (Bibl.12). 

The instrument i s  ca l ib ra t ed  under labora tory  conditions. The procedure i s  
t h e  same i n  t h e  USSR and i n  t h e  USA (Bibl.7, 16).  It cons i s t s  of measuring t h e  
amplitude of pu lses  obtained at  t h e  output of t h e  instrument when s t e e l  b a l l s  of 
a known mass M are dropped on t h e  working surface of t h e  sensor. The height of 
drop hl and t h e  height of rebound h2 are measured. The momentum imparted t o  the  
sensor i s  determined by t h e  known formula 

mu =m f 2 g ( h t - h 2 ) ,  (15 . V I I )  

where g i s  t h e  acce lera t ion  of g rav i ty  at  a given l a t i t u d e .  
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The c a l i b r a t i o n  curve i s  p l o t t e d  as t h e  dependence of t h e  output volt- /l81 
age U o u t  on t h e  moment of momentum ioutf ( m v ) .  The curve i s  p r a c t i c a l l y  l i n e a r= 
with in  a wide range from lo-' t o  10 dyne/sec, and t h e  equipment records vibra
t i o n s  of t h e  c a r r i e r  only i n  t h e  outgoing sec t ion  (Bibl.7, 16). Processing of 
t h e  telemetry da ta  cons i s t s  i n  determining U o u t  f o r  various i n s t a n t s  of t i m e ,  
and from t h i s  t h e  moment of momentum mv. If we consider t h a t  t h e  r eac t ive  mo
mentum i s  propor t iona l  t o  t h e  p a r t i c l e  energy or moment of momentum, then - i f  a 
d e f i n i t e  ve loc i ty  i s  assumed [v  being equal t o  40 or 50 km/sec i n  t h e  USSR or 
30 km/sec i n  t h e  USA (Bibl.11, 16) l  - t h e  m i n i m u m  recordable p a r t i c l e  mass can 
be determined. 

The e r r o r  of counting t h e  p a r t i c l e s  and determining t h e i r  f lux through unit 
cross sec t ion  i s  s m a l l ;  it i s  determined by s t a t i s t i c a l  func t iona ls  which were  
discussed above for similar c i r c u i t s  (see Chapt-V). A s  we mentioned there ,  t h e  
mass i s  estimated i n  first approximation with an  uncertainty f a c t o r  of t h e  order 
of 3 (Bibl.11). 

CHAPTER V I 1 1  

hAsUREMEnrT OF ELECTROSTATIC AND MAGNETIC FIELDS 

Section 1. Basic P r inc ip l e s  of t h e  Atmospheric E l e c t r o s t a t i c  Field 

E l e c t r o s t a t i c  f i e l d s  i n  t h e  atmosphere a r e  generated upon t h e  formation of 
space charges. In t h e  upper atmosphere, by v i r t u e  of i t s  exce l len t  conductivity, 
p ro t rac ted  existence of high s t a t iona ry  space charges i s  improbable, whereas 
space charges forming i n  t h e  troposphere may reach t e n s  of Coulombs. Close t o  
thunderclzuds, t he  e l e c t r o s t a t i c  f i e l d  strength,  f o r  example, may be quite high 
(up t o  10 - io4 v/cm). 

A n  e l e c t r o s t a t i c  f i e l d  i s  observed a l s o  close t o  a l l  charged bodies exist
i n g  i n  t h e  atmosphere. Close t o  t h e  ear th ,  i n  p a r t i c u l a r ,  an e l e c t r o s t a t i c  
f i e l d  caused by i t s  negative charge i s  ac t ive .  

The s t rength  ( p o t e n t i a l  g rad ien t )  of t h e  e l e c t r o s t a t i c  f i e l d  c lose  t o  t h e  
earth during c l e a r  weather i s  d i f f e r e n t  at  d i f f e r e n t  po in ts .  It changes from 
severa l  t en ths  of v o l t s  t o  severa l  v o l t s  p e r  centimeter and i t s  vec tor  i s  d i 
rected toward t h e  ear th .  The average value of t h e  s t r eng th  of t h e  normal e a r t h  
f i e l d  i s  &,, = 1.3 v/cm. The sur faces  of a normal f i e l d  of t h e  e a r t h  are caused 
by space charges of clouds, p rec ip i t a t ion ,  e t c .  

The normal f i e l d  of t h e  e a r t h  decreases with t h e  height h by an exponential 
l a w  of t h e  type 

E,, =Eone-ah, ( L V I I I )  

where E,, i s  t h e  s t r eng th  of t h e  normal f i e l d  c lose  t o  t h e  ea r th ,  and a i s  /182 
a constant. 

A t  a height of about h = 10 Ism t h e  normal f i e l d ,  as w e  see, i s  already very 



weak. There i s  Li t t le  information ava i l ab le  at  present on e l e c t r o s t a t i c  f i e l d s  
and thus  a l s o  on space charges i n  t h e  upper atmosphere, s ince  develoDment of di
r e c t  measurement methods s t a r t e d  only r ecen t ly  both i n  t h e  USSR (BiGl .a ,  3) and 
i n  t h e  USA (Bibl.21). 

Measurements ca r r i ed  out on geophysical rocke ts  of t h e  USSR s ince  1957 
(Bibl.3, 12) showed t h a t  t h e  e l e c t r o s t a t i c  f i e l d  near t h e  surface of a rocket 
mainly corresponds t o  i t s  negative charge and, on t h e  average, i s  equal t o  
0.2 - 2 v/cm . The maximum value of t h e  f i e l d  s t r eng th  reached 6 v/cm, and tra
jec tory  segments were observed where t h e  rocket acquired a p o s i t i v e  charge. Com
para t ive ly  weak ex te rna l  e l e c t r o s t a t i c  f i e l d s ,  not associated with t h e  charge of 
t h e  rocket, have a l s o  been3recorded. The ex te rna l  f i e l d  s t r eng th  was found t o  
be of t h e  order of E = 10- v/cm, and i t s  magnitude d id  not change by more than  
a f a c t o r  of 3 - 5 wi th in  heights of 100 - a0 Ism. 

The e l e c t r i c  f i e l d  near t h e  third satell i te was a l s o  small. The f i e l d  
s t r eng th  d id  not exceed a value of E = 3 v/cm; however, i n  t hese  measurements 
t h e  results were subs t an t i a l ly  d i s to r t ed  by t h e  presence of noise (Bib1.11). 

The necessity t o  measure t h e  e l e c t r o s t a t i c  f i e l d  near t h e  surface of t h e  
c a r r i e r  i s  due pr imar i ly  t o  t h e  e f f e c t  of t h e  f i e l d  on t h e  measurements of vari
ous environmental parameters ( see  Chapt .II). These measurements help t o  def ine  
t h e  causes of magnetic storms and po la r  auroras, t h e  causes of e l e c t r i f i c a t i o n  
of t h e  e a r t h  and atmosphere, e t c .  

Measurements of t h e  e l e c t r o s t a t i c  f i e l d  s t r eng th  near t h e  surface of a 
space vehicle are a l s o  important f o r  solving t echn ica l  problems, i n  p a r t i c u l a r  
for determining t h e  operating conditions of i o n  devices. 

Section 2. Pr inc ip le  and Procedure of Measuring t h e  E l e c t r o s t a t i c  Field 

Measurements of e l e c t r o s t a t i c  f i e l d  s t r eng th  are based on t h e  co r re l a t ion  
between t h e  surface dens i ty  of an e l e c t r i c  charge of a conducting body i n  this 
f i e l d  and i t s  strength.  .The surface dens i ty  of a charge o induced on t h e  
surface of a conductor, as follows from t h e  known theorem of Ostrogradskiy-Gauss, 
i s  associated with t h e  normal component of . t h e  f i e l d  s t r eng th  at  a given po in t  E 
by t h e  r e l a t i o n  

E E  =4n0, (2. VIII) 

where c i s  t h e  d i e l e c t r i c  constant of t h e  medium. 

If, i n  a uniform f i e l d  of s t r eng th  E, a conducting p l a t e  with a surface s 
normal t o  t h e  f i e l d  i s  inser ted ,  then t h e  charge induced on it 

EES q=--
431 ’ ( 3  .VIII) 

and t h e  p o t e n t i a l  of t h e  p l a t e  caused by this charge, W i l l  be /183 
EESI/=-
4nC ’ (4.VIII) 
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where C i s  t h e  capacitance of t h e  p l a t e .  

Measurements of t h e  f i e l d  s t rength  E, based on these re la t ions ,  can be ac
complished by s t a t i c  and dynamic methods. I n  t h e  former case, t h e  quantity E i s  
determined by measuring t h e  charge of a ce r t a in  body i n  a f i e l d  by m e a n s  of 
eq.(3.VIII). T h i s  method, however, i s  more d i f f i c u l t  t o  use i n  t h e  upper at
mosphere since, f o r  such measurements, highly sens i t i ve  electrometers are needed 
and r a the r  high requirements f o r  i n su la t ion  must be m e t .  

E

l!!!!!!!!l! ,Lq 
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Fig.l.VII1 Pr inc ip le  of Action of an Elec t ros t a t i c  Generator. 
a - With exposed p l a t e ;  b - With shielded p l a t e .  

The dynamic method, based on t h e  use of so-called e l e c t r o s t a t i c  generators 
or fluxmeters, i s  more r e l i ab le .  The mode of ac t ion  of t h e  fluxmeter cons is t s  
i n  converting t h e  e l e c t r o s t a t i c  f i e l d  t o  an a l t e rna t ing  voltage o r  current by 
per iodic  exposure and shielding of t h e  conducting body i n  t h e  f i e l d  being meas
ured. I n  this case, movement of t h e  charges induced i n  t h e  body crea tes  a meas
urable a l t e rna t ing  e l e c t r i c  current.  The magnitude of t h e  current i s  d i r e c t l y  
proportional t o  t h e  magnitude of t h e  f i e l d  s t rength  (Bibl.13). 

The e l e c t r o s t a t i c  generator, representing t h e  receiving element of t h e  in
strument, contains a measuring p l a t e  (1)(Fig.l.VII1) and a ro t a t ing  sh ie ld  (2). 
The sh ie ld  and p l a t e  are connected with t h e  casing of t h e  object (capsule),  and 
a load res i s tance  R, shunted by t h e  capacitance C, i s  connected i n t o  the  p l a t e  
c i r c u i t  (1). When t h e  p l a t e  (1)i s  exposed (Fig.la.VII1) a negative charge /1&
W i l l  be induced on i t s  q p e r  surface under t h e  e f f e c t  of t h e  f i e l d  E being meas
ured and a pos i t i ve  charge on t h e  lower surface.  A s  a consequence, a current  i 
w i l l  flow through t h e  res i s tance  R t o  t h e  sk in  of t h e  capsule. When t h e  p l a t e  
(1)i s  shielded, a current  of opposite d i r ec t ion  will flow through t h e  resist
ance R, compensating t h e  negative charge of t h e  p l a t e .  A t  a l t e rna t ing  exposure 
and shielding of t h e  measuring p l a t e ,  an a l t e rna t ing  current i w i l l  flow through 
t h e  load res i s tance  R, whose magnitude, according t o  eq.(3.VIII), Will be equal 
t o  

where -	ds i s  t h e  rate of change of t h e  surface area of t h e  p l a t e .
d t  

The i n s t a n t s  of t h e  change i n  s ign  of t h e  current  i coincide with t h e  start 
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of  sh ie ld ing  or exposure. A t  a constant rate of change of t h e  area s, as fo l 
lows from eq.(5.VIII), t h e  absolu te  value of t h e  cur ren t  i w i l l  not change i n  a 
constant f i e l d .  

I n  t h e  equipment'being used, t h e  frequency of exposing t h e  p l a t e  v i s  of 
t h e  order of lo3 cps. The rate of change of t h e  p l a t e  area i n  this case i s  of 

t h e  order of 
d t  

= lo4 cm"-sec-' (Bibl.12). Based on this quantity, eq.(S.VIII) 

makes it poss ib l e  t o  estimate t h e  magnitude of t h e  cur ren t  of t h e  measuring 
p l a t e  i. For example, i n  a f i e l d  of E = 1v/cm this cur ren t  w i l l  be i = 
= IO-' amp. The voltage drop across t h e  r e s i s t ance  R = l o 5  ohm w i l l  be U = 
= v. T h i s  voltage should be amplified and measured by t h e  e l ec t ron ic  c i r 
c u i t  of t h e  instrument. W e  note t h a t  t h e  load  r e s i s t ance  R i n  t h e  upper atmo
sphere may be shunted by t h e  r e s i s t ance  of t h e  ambient medium. To avoid this, 
t h e  value of H should be s u f f i c i e n t l y  small. 

It follows from t h e  operating p r i n c i p l e  of t h e  e l e c t r o s t a t i c  generator t h a t  
a r eve r sa l  of d i r e c t i o n  of t h e  vec tor  of t h e  f i e l d  s t rength  E w i l l  result i n  a 
phase shift of t h e  cur ren t  5 or of t h e  voltage U by 180'. T h i s  can be recorded 
by t h e  measuring c i r c u i t  whose output i s  provided with a phase de tec tor .  

The block diagram of t h e  instrument (Fig.2.VIII) shows t h e  above-mentioned 
basic elements. 

I I I I 

Fig.2.VIII Block Diagram of Instrument f o r  Measuring 
E l e c t r o s t a t i c  Field Strength. 

Measurements i n  t h e  upper atmosphere, however, are accompanied by t h e  ap
pearanc" of a noise cur ren t  i2,which can be reduced by modifying t h e  described 
c i r c u i t .  L e t  us examine t h e  an t ino i se  measures proposed by Ya.M.Shvarts 
(Bib1.18). 

The generation of noise i s  due t o  t h e  following bas i c  causes: 

a) 	curren ts  on t h e  surface of t h e  measuring plat 'e, owing t o  i t s  motion 
i n  t h e  plasma; 

b) 	photoemission from t h e  p l a t e  under t h e  inf luence  of s o l a r  short-wave 
rad ia t ion  ; 

c )  induction of charges, owing t o  motion i n  a magnetic f i e l d .  /185 
The magnitude of t h e  t o t a l  noise current i2evidently i s  determined by t h e  
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exposed surface of t h e  p l a t e  s 

h =. j ~ s ,  (6  .VIII) 

where j2 i s  t h e  noise cur ren t  density.  

The time diagrams of t h e  usefu l  cur ren t  of t h e  s i g n a l i l  and of t h e  noise  

cur ren t  i2at  a constant rate of change of t h e  exposed surface s \ A  = const) 
d t  

are shown i n  Fig.3.VIII. 

Fig.3.VIII Time Diagrams of t h e  Currents of an 
E l e c t r o s t a t i c  Generator. 

The t o t a l  voltage en ter ing  t h e  measuring c i r c u i t  from t h e  output of t h e  
e l e c t r o s t a t i c  generator will be t h e  result of t h e  e f f e c t  of t h e  s i g n a l  current il 
and noise cur ren t  iaon t h e  output RC-loop of t h e  generator ( see  Fig.l.VII1). 

A harmonic ana lys i s  (Bibl.18) showed t h a t  t h e  phase shift between cor
responding harmonics of t h e  voltages of t h e  s i g n a l  U1 and of t h e  noise  U2 i s  
equal t o  t h e  phase shift between t h e  cur ren ts  il and i 2 ,  %.e., 90°, where t h e  

U1form of t h e  voltages and cur ren ts  d i f f e r s .  The signal-to-noise r a t i o  -= m 
U2 

a t  t h e  output of t h e  e l e c t r o s t a t i c  generator (or a t  t h e  input  of t h e  measuring 
c i r c u i t ) ,  operating i n  a medium wi th  a d i e l e c t r i c  constant e ,  i s  ecpal t o  

EEV m=-. 

2 j 2  

When tak ing  measurements i n  t h e  plasma of t h e  upger atmosphere, yhere 
t h e  noise cur ren t  dens i ty  reaches a value of j2 = 10- t o  amp/cm 

.for2t h e  signal-to-noise r a t i o  becomes appreciably l$ss . than  un i ty  (m = 
instrument wi th  an exposure frequency of v = 10 cps i n  a f i e l d  of E = 1v/cm ). 

Several methods of suppressing t h e  noise cur ren t  are possible.  One i s  t o  
use a phase-sensitive element a t  t h e  output of t h e  measuring c i r c u i t ,  exac t ly  
tuned t o  t h e  f irst  harmonic of t h e  s i g n a l  voltage. 
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Noise suppression a t  t h e  output of t h e  instrument m y  lead  t o  overloading 
of t h e  amplif icat ion c i r c u i t .  Therefore, an t ino ise  measures must a l s o  be taken 
a t  t h e  input  of t h e  measuring c i r c u i t .  

A method of modulating t h e  e l e c t r o s t a t i c  f i e l d  without modulating t h e  noise  
current,  by using l a t t i c e d  electrodes,  has found p r a c t i c a l  use i n  t h e  instru
mentation of geophysical rockets (Bib1.12). 

An estimate (Bibl.18) shows t h a t  t h e  o v e r a l l  increase  i n  s e n s i t i v i t y  of t h e  
instrunen: obtained with t h e  use of a l l  poss ib le  an t ino i se  measures may become 
lo5 t o  10 -fold. T h i s  means t h a t ,  against  a background of maximum poss ib le  
noise current  i n  t h e  ionosphere, it i s  poss ib le  t o  measure f i e l d s  c lose  t o  t h e  
surface of t h e  c a r r i e r  with a s t rength  of at  least E i  = 3 X lo-* v/cm (a t  an ex
posure frequency of v = 1500 cps). 

Section 3 .  Equipment Used 

The equipment developed by G.L.Gdalevich, I.M.Ing.anitov, and coworkers was 
used t o  measure t h e  magnitude and s ign of t h e  e l e c t r o s t a t i c  f i e l d  a t  two dia
metrally opposite po in ts  of t h e  capsules of geophysical rockets (Bibl.3) and on 
t h e  t h i r d  satel l i te  (Bibl.11). Similar  equipment, as far  as w e  can judge from 
another paper (Bibl.21), was used a l so  i n  t h e  USA. 

The placement of t h e  sensors ( e l e c t r o s t a t i c  generators) and measuring u n i t  
MU on t h e  t h i r d  satell i te (Bib l . l l )  was shown i n  Fig.5.I. 

The block diagram of t h e  equipment was described earlier ( see  Fig.2.VIII). 

The measuring and shielding p l a t e s  were made i n  the  form of f la t  nickel-
p la ted  brass  d isks  with six uniformly arranged sec to r  cutouts.  

The output voltage of t h e  reference voltage generator  (RE) had a frequency 
of 900 cps (equal t o  t h e  s igna l  frequency) and an amplitude of about 100 v. It 
was driven by a motor M having a s t ab i l i zed  r o t a t i o n a l  speed of 9000 rpm within 
an accuracy of -c2 - 3%. 

The measuring c i r c u i t  cons is t s  of two channels, each of which i s  connected 
with i t s  own e l e c t r o s t a t i c  generator (one channel i s  shown i n  Fig.4.VIII). Both 
channels are designed i n  t h e  same manner and include an amplifier, a synchronous 
detector ,  an output (matching) cathode follower, and a device f o r  automatic 
s e n s i t i v i t y  switching. The channels are supplied from a comon diode (& -
r e c t i f i e r .  

The three-stage AC arqlifier i s  composed of 6ZhlB tubes &, L,, and L5; it 
a l s o  contains a 900-cycle frequency f i l ter .  The passband of t h e  amplif ier  with 
respect  t o  t h e  0.95 l e v e l  i s  .equa15to 100 cps. The amplif icat ion f a c t o r  a t  
maximum s e n s i t i v i t y  i s  K u  = 5 X 10 The automatic s e n s i t i v i t y  switch i s  a two-
stage amplifier composed of 6ZhlB tubes L3 and L4 which controls  operation of 
t h e  relay P1. The latter,  a t  a su f f i c i en t ly  high s igna l  voltage, reduces t h e  
s e n s i t i v i t y  by switching t h e  res i s tancecoupled  (RE and R i e )  d iv ide r  i n t o  t h e  
c i r c u i t .  
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Fig.l+.VIII 	 Principal  Wiring Diagram of One Channel of t h e  Instrument 
f o r  Measuring t h e  Elec t ros ta t ic  f i e l d  Strength. 



The max5mum s e n s i t i v i t y  of t h e  instrument (before switching t o  t h e  coarse 
range) i s  such t h a t  0.1 v at  i t s  output corresponds t o  a measured f i e l d  s t r eng th
aE = 0.2 v/cm. Switching t o  t h e  coarse range (and back) occurs at a s t rength
El = 6 v/cm (without consideration of t h e  noise cur ren t ) .  

The synchronous d e t e c t o r  i s  a bridge i n t o  whose two arms DGTs-8 diodes U2 
and D3 are connected. The measured voltage i s  fed  t o  t h e  synchronous de t ec to r  

' from t h e  t h i r d  s t age  of t h e  ampl i f ie r  ( tube  L5). The reference voltage RV i s  
generated by t h e  reference voltage generator RVC;. 
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Fig.5.VIII Cal ibra t ion  Curves of t h e  Instrument 
f o r  Measuring t h e  E l e c t r o s t a t i c  

F ie ld  Strength . 

The t h e  constant of t h e  instrument 7 = 5 X lod5 sec (Bibl.3) i s  approx
imately by one order of magnitude g r e a t e r  than  t h e  ca lcu la ted  time of es tab l i sh
ing  t h e  p l a t e  p o t e n t i a l .  

Cal ibra t ion  of t h e  instrument was done i n  t h e  conventional manner (Bibl.13) 
by using an auxiliary p l a t e  t o  which a known p o t e n t i a l  was applied from an aux
il iary source. T h i s  p l a t e  was placed at  a d is tance  of 1cm from t h e  measuring 
p l a t e .  The c a l i b r a t i o n  curves of this equipment are p lo t t ed  i n  Fig.5.VIII. 
Curve lwas obtained with a c a l i b r a t i o n  p l a t e  and curve 2 i n  a f l a t  capacitor.  
We note t h a t  i n  this case t h e  cor rec t ion  f ac to r ,  which usua l ly  takes  t h e  edge 
e f f e c t s  i n t o  account, i s  equal t o  2.2. 

Studies of this type of equipment (Bibl.3) showed t h a t  i t s  s e n s i t i v i t y  
d r i f t  during f l i g h t  does not exceed 15% and t h a t  i t s  zero d r i f t  i s  not  more than 
0.2 v i n  30 min. Since 0.2 v corresponds t o  an ex te rna l  f i e l d  s t rength  of 
0.4 v/cm, t h e  m a A "  e r r o r  of t h e  f i e l d  measurements i n  t h e  absence of noise i s  
considered t o  be not more than  0.6 v/cm or approximately 20% i f  E 2 3 v/cm. How
ever, t h e  presence of no i se  may subs t an t i a l ly  d i s t o r t  t h e  results obtained 
(Bibl.12, 10). 

Section 4. Magnetic F ie ld  i n  t h e  Atmomhere and i n  &ace m 
The geomagnetic f i e l d  can be represented with g rea t  accuracy by a d ipole

3
f i e l d  having a magnetic moment M = 8.3 lo"" oe=cm ,whose south pole  i s  located 
c lose  t o  t h e  north po le  N and whose axis i s  inc l ined  t o  t h e  ax is  of r o t a t i o n  of 
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t h e  e a r t h  a t  an angle of about 12'. The i n t e r c e p t s  of t h e  axis  of t h e  equiva
l e n t  d ipole  (Fig.6.VIII) wi th  the  surface of t h e  e a r t h  are ca l led  t h e  geomag
n e t i c  poles.  The hor izonta l  component of t h e  f i e l d  s t rength  has a maximum value 
(about 0.4 oe) near t h e  Equator and t h e  v e r t i c a l  component, near t h e  poles  
(about 0.7 oe).  

Fig.6.VIII I s o l i n e s  of t h e  Earth's Magnetic Field.  

The remanent f i e l d  obtained by subt rac t ing  t h e  f i e l d  of t h e  homogeneously 
magnetized e a r t h  from t h e  observed f i e l d  mainly represents  six world anomalies, 
whose s t rength  d i f f e r s  by a magnitude up t o  30% from t h e  s t rength  of a normal 
d ipole  f i e l d .  These anomalies include t h e  Eastern S iber ian  cont inenta l  anomaly 
extending over t h e  e n t i r e  t e r r i t o r y  of t h e  Soviet Union with a peak at t h e  center  
of about 0.6 oe West of Yakutsk (Bibl.7), t h e  African anomaly opposite t o  i t  i n  
sign, t h e  anomaly c lose  t o  Antarctica, and others.  

The numerous reg iona l  and l o c a l  anomalies of t h e  earth's magnetic f i e l d ,  
which r e f l e c t  t h e  s t r u c t u r e  and composition of t h e  outermost l aye r s  of t h e  
ea r th ' s  c rus t ,  render any map of t h e  magnetic f i e l d  qui te  varied. A study of 
t h e  d i s t r i b u t i o n  of t hese  anomalies forms t h e  bas i s  of magnetic surveying 
methods. 

The magnetic f i e l d  of t h e  e a r t h  i s  usually divided i n t o  constant and vari
ab le  f i e l d s .  The constant f i e l d  a l s o  includes very slow, so-called secu la r  f i e l d  
changes, w h i l e  a l l  o the r  more rap id  changes such as magnetic storms, f luctua
t i o n s ,  d iu rna l  va r i a t ions ,  e t c .  belong t o  t h e  va r i ab le  f i e l d .  The d i u r n a l  vari
a t ions  reach 40 gammas (y  = oe) and more. The amplitude of v a r i a t i o n  /190
i n  t he  horizontal  and v e r t i c a l  components of t h e  f i e l d  s t rength  during magnetic 
storms reaches hundreds and thousands of gammas. I n  such a case, abrupt changes 
of t h e  f i e l d  may occur wi th in  a shor t  period, counted i n  seconds (q t o  
20,000 gammas/sec). 

Numerous analyses of t h e  constant f i e l d  show t h a t  99% of t h e  f i e l d  i s  pro
duced by sources wi th in  t h e  ear th .  Most of t h e  var iab le  f i e l d  (about 70%) is 
due t o  extraterrestrial sources. 

The magnetic f i e l d  s t r eng th  a t  a d is tance  R from t h e  e a r t h  decreases ap-



p roAmat e l y  by an exponential l a w  [proportional t o  t h e  r a t i o  where R 3  

i s  t h e  ear th ' s  radius],  dropping from 1500 y a t  a height of about 18,000 lan t o  
approximately 100 y at  a dis tance of 50,000 lan (Bibl.8). 

Invest igat ions of t h e  f i e l d  i n  t h e  immediate v i c i n i t y  of t h e  ear th ,  a t  dis
tances  R from 0.05 t o  0.5 RS, which are of g rea t e s t  i n t e r e s t  and were t h e  most 
extensive of t h e  s tud ies  made with t h e  t h i r d  satell i te,  make it poss ib le  t o  es
t a b l i s h  a correspondence between the  measured and calculated values of t h e  geo
magnetic f i e l d  with an accuracy t o  within 0.1 - 1.5$, which l ies  within the  
limits of accuracy of modern magnetic cha r t s  (Bibl.7). A t  g r ea t e r  dis tances  R = 
= 2.5 - 4 R 3  subs t an t i a l  deviations of t h e  measured values of t h e  f i e l d  from t h e  
calculated values occurred, both with respect  t o  magnitude and character  of t h e  
gradients.  A t  d is tances  g rea t e r  than 8 R 3  t h e  measured values of t he  t o t a l  
vector of t h e  f i e l d  s t rength  were higher than t h e  calculated values; a t  a dis
tance of 13 RB, this excess reached 100% although t h e  o v e r a l l  var ia t ion  of t h e  
f i e l d  i s  characterized by i t s  decrease with dis tance from t h e  ear th .  A t  d is
tances of 10 - 15  R3, appreciable f i e l d  f luc tua t ions  are observed with respect 
t o  magnitude and d i r ec t ion  (by appro-tely 50$, at an absolute magnitude of 
s t rength  of several t e n s  of garmnas) . Sh.Sh.Dolginov and N.V.Pushkov (Bibl.7) 
suggest t h a t  this region i s  t r a n s i t i o n a l  between t h e  geomagnetic f i e l d  and t h e  
solar plasma. 

Streams of so* ionized gas are ab le  t o  t ranspor t  magnetic f i e l d s  with a 
magnitude q~t o  10- gauss t o  grea t  d i s tances  from t h e  sun. The veloci ty  of 
these  streams i s  comparable with t h e  ve loc i ty  of space vehicles,  so  t h a t  t h e  
durat ion of t h e  e f f e c t  of "frozen" f i e l d s  on t h e  magnetometric instruments may 
be s u f f i c i e n t l y  grea t .  

Measurements of t h e  magnetic f i e l d  i n  in te rp lane tary  space, performed dur
ing f l i g h t s  of t h e  PioneePV (1960) and of t h e  Soviet  in te rp lane tary  spacecraft  
launched toward Venus (1961) yielded f i e l d  s t r e n  t h  values during quiet days of 
2 - 5 y and during storms, of up t o  50 y (Bibl.77. 

A d i r e c t  study of t h e  magnetic f i e l d  of c e l e s t i a l  bodies began with t h e  
f l i g h t  of t h e  second Soviet lunar probe. During these  measurements, up t o  dis
tances of 55 km from t h e  lunar  surface,  no s igns of a noticeable magnetic /191
f i e l d  were noted, at  a threshold s e n s i t i v i t y  of t h e  equipment of 20 - 30 y 
(Bibl.5). The American spacecraft  Mariner-2 (1962), at  a dis tance of 32,000 km 
from the  surface of Venus, a l s o  detected no not iceable  magnetic f i e l d .  These 
da ta  ind ica t e  t h a t  t h e  magnetic moment of t h e  moon cannot be more than and 
t h a t  of Venus 10-1 of t h e  magnetic moment of t h e  ea r th  (Bibl.7). 

Sunspots are accompanied by in tense  magnetic f i e l d s  whose s t rength reaches 
4 x lo3  oe. Fields  of this order were found a l s o  f o r  c e r t a i n  stars. The 
presence of a general  dipole  f i e l d  has not  y e t  been r e l i ab ly  establ ished f o r  t h e  
sun. The most probable magnetic moment of t h e  sun i s  considered t o  be 4 X 
x oe*cm3 . A t  this value of t h e  moment, t h e  f i e l d  s t rength  at the  solar 
poles  should be a tout  25 oe, whereas on e a r t h  t h e  f i e l d  s t rength  of t h e  sun i s  
not more than 10- oe (Bibl.7). 
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The magnetic f i e l d s  p lay  a major r o l e  i n  processes taking p lace  i n  outer  
space and i n  t h e  upper atmosph.ere. These f i e l d s  a f f e c t  t h e  movement of l a rge  
p a r t i c l e s  i n  t h e  atmosphere and of p a r t i c l e s  enter ing from without; influence 
t h e  character  of radiowave propagation; cause l a t i t u d i n a l  e f f e c t s  i n  cosmic rays 
(see  Chapt.V); are associated with t h e  formation of t h e  r ad ia t ion  be l t s ,  e t c .  

The cha rac t e r i s t i c s  of measuring magnetic f i e l d s  i n  t h e  upper atmosphere 
and i n  space require t h e  measurement of r a the r  small quant i t ies  i n  a l a rge  range 
and a t  a high rate of change of t h e  f i e l d  i n  time and space and a l so  i n  the  
presence of appreciable magnetic disturbances caused by various measuring and 
auxiliary equipment t h a t  generate such f i e l d s  on t h e  space vehicle.  

A main t a sk  of present-day inves t iga t ions  i s  t o  r e f ine  t h e  ava i lab le  da ta  
and t o  accumulate da ta  f o r  various conditions and geophysical processes and a l s o  
t o  perform magnetic surveys at  g rea t  heights. 

Section 5. MaanetLmetric Equipment 

Measurements i n  t h e  upper atmosphere and space are accomplished by ma  neto
meters based on various pr inc ip les :  induction, magnetodynamic (ferroprobe7, 
nuclear or atomic resonance, and op t i ca l  pumping. 

Instruments operating by all of these  methods have found p r a c t i c a l  applica
t ion ,  with t h e  most widely used being ferroprobe three-component magnetometers 
(with saturated cores) by means of which t h e  most important results of measure
ments were obtained, espec ia l ly  i n  t h e  USSR (Bibl.7). I n  these  magnetometers 
there  are three  completely i d e n t i c a l  independent channels, each of which /192+ 

measures the  magnitude of t h e  pro jec t ion  of t h e  f i e l d  s t rength  vector T onto t h e  
axis of t h e  saturated core. The range of measured quant i t ies  i s  determined by 
the  sens i t i v i ty .  By i n s t a l l i n g  t h e  pickups along th ree  mutually perpendicular 
d i rec t ions ,  three f i e l d  components T,, Ty, T, are obtained, from which t h e  t o t a l  
vector i s  determined. For example, on t h e  first Soviet spacecraf t  (Jan.2, 1959) 
a ferroprobe three-component magnetometer with independent channels was used. 
The measuring range with respect t o  each channel was A 3 0 0 0  y a t  a s e n s i t i v i t y  of 
600 y p e r  vol t  on t h e  telemetry sca l e  (Bibl.4). 

The f i r s t  magnetic surveys i n  space were performed by means of a self-
or ien t ing  ferroprobe ma netometer i n s t a l l e d  on t h e  t h i r d  satell i te by Sh.Sh. 
Dolginov e t  al .  (Bibl.9 7. Ferroprobe three-component magnetometers were in
s t a l l e d  on the  in te rp lane tary  spacecraf t  launched i n  t h e  USSR toward Venus and  
Mars (Bibl.4 - 8) .  

Magnetometers of this type were a l so  used i n  t h e  USA. I n  pa r t i cu la r ,  they 
were i n s t a l l e d  on Ekplorer-X and Explorer-XII and on Mariner-I1 (Bibl.7). 

The three-co onent magnetometer with ferroprobe pickups i n s t a l l e d  on t h e  
Explorer-XI1 (19617 had a range of *lo00 y f o r  each channel and an e r r o r  of not 
more than &20 y (Bibl.7). The instrument i n s t a l l e d  on Mariner-I1 (1962) had a 
higher s ens i t i v i ty :  t h e  e n t i r e  range f o r  each channel was only i60 y (Bibl.7). 
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Single-channel instruments with ferroprobe pickups were used as variometers 
[Venus and Mars probes (Bibl.6, 7), Explorer-X (Bib1.7)l. One-component magne
tometers of  t h e  ordinary induction type were successful ly  used on t h e  first 
American spacecraft ,  Pioneer-I, Pioneer-V, Explorer-VI (Bibl.7, 21). 

To increase sens i t i v i ty ,  nuclea+induction, mainly proton [Vanguard-111 and 
others  (Bibl.7, 20)l  and a l s o  rubidim-vapor [Explorer-X (Bibl.7, 22)1 magneto
meters have recent ly  come i n t o  wider use i n  t h e  USA i n  space research on t h e  
magnetic f i e l d .  

Features of t he  proton magnetometers include t h e i r  higher s e n s i t i v i t y  and 
accuracy and t h e  absoluteness of t h e  measurements; magnetometers of this type 
are generally used as standards.  However, Hepner e t  al. (Bibl.24) mentioned 
t h a t  magnetic surveys i n  space do not require measurement of t h e  f i e l d  with an 
accuracy of more than O. l%,  s ince  t h e  low accuracy of tying-in the  da ta  with re
spect t o  sa te l l i t e  o r b i t  measurements p laces  a limit on t h e  required accuracy of 
t h e  measurements. Thus, i n  measurements with t h e  nuclear-induction magnetometer 
i n s t a l l e d  on Vanguard-I11 t h e  t o t a l  e r r o r  of measurement a t  a height of 
500 km was a t  least f60 y (&O y a t  a height of 1000 Ism) although t h e  measure-

/193 
ment e r r o r  of t h e  f i e l d  by t h e  instrument i tself  was appreciably l e s s  (Bibl.7, 
24) 


Optically-pumped magnetometers apparently have good prospects f o r  fu tu re  
use i n  inves t iga t ions  of t h e  magnetic f i e l d .  Their v i r tues  are a wide range of 
measurable quant i t ies ,  appreciably lower power consumption than t h a t  of nuclear-
induction magnetometers, rapid response, and absoluteness of t h e  measurements. 
For example, t h e  rubidium-vapor magnetometer i n s t a l l e d  on Fqlorer-X operated i n  
a range from 3 t o  10,000 y .  Its t o t a l  weight was only 1.2 kg, and t h e  power re
quirement was 5.5 w (Bib1.22). According t o  t h e  da ta  by K.Ruddock (Bib1.22), a 
s e n s i t i v i t y  t o  0.001 y can be obtained f o r  magnetometers of this type. 

Sect ion 6. Pr inc ip les  of t h e  NuclearcInduction Method 

The nuclear induct ion method of measuring f i e l d  s t rength  u t i l i z e s  t h e  
phenomenon of free precession of a nucleus i n  an externa l  magnetic f i e l d .  

The frequency of nuclear precession i n  a magnetic f i e l d ,  whose d i r ec t ion  
does not coincide with t h a t  of t h e  magnetic moment of t h e  nucleus, i s  determined 
by t h e  r e l a t i o n  

0 =r ( 1  --IT, (8. V I I I )  

where i s  the  gyromagnetic r a t i o  equal t o  t h e  quotient from t h e  d iv is ion  of t h e  
magnetic moment by t h e  angular moment, 0 i s  a small quantity taking i n t o  account 
t h e  shielding of t h e  nucleus by t h e  e lec t ron  s h e l l  (sometimes disregarded). 

On t h e  bas i s  of eq.(8.V111) the  measured frequency of t h e  free precession 
of t h e  nucleus Will y ie ld  t h e  s c a l a r  quantity of t h e  t o t a l  q e l d  Ftrength T. 
The gyromagnetic r a t i o  of protons rp = (2.67528 f 0.00006)10 cm- oe-’ i s  
known with extreme accuracy. Therefore, proton magnetometers operating on t h e  
p r inc ip l e  of measuring t h e  frequency of free precession of protons i n  t h e  work
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i n g  medim of the  sensor are i n  general  use. The character  of t h e  precession of 
an atom depends on t h e  magnitude of t h e  ex te rna l  f i e ld :  i n  weak f i e l d s  ( T  < 
< 10” oe) it precesses with t h e  t o t a l  magnetic moment as a whole; i n  strong 
f i e l d s  the  bond between t h e  nuclear and e lec t ron  moments i s  ruptured so t h a t  
these  vectors precess about t h e  ex terna l  f i e l d  independently of one another. 

To obtain free precession i n  t h e  working med ium of t h e  sensor, a su f f i c i 
en t ly  strong magnetic f i e l d  (T > 10”oe) must first be set up, causing nuclear 
magnetization, after which t h e  frequency of nuclear precession cam be measured. 
Thus, t h e  measuring proceeds i n  d i s c r e t e  s teps ,  consis t ing of exc i ta t ion  (polar i 
zat ion)  of t h e  Sensor and measurement of t h e  frequency w. Nuclear magnetization 
of t h e  sensor i s  brought about by t h e  e f f e c t  of t h e  magnetic f i e l d  of an ex- ,&& 
c i t i n g  co i l ,  encompassing t h e  working body. The exci t ing f i e l d  should be di

+ 
retted approximately perpendicular t o  t h e  measured f i e l d  T. I n  this case, t h e  
macroscopic magnetization of t h e  body M increases  with time t by t h e  exponential
l a w  

( 9  .VIII) 

where M. i s  t h e  magnetic suscep t ib i l i t y  of t h e  body of t h e  sensor, To i s  t h e  
s t rength  of t h e  exci t ing f i e l d ,  and t ,  i s  re laxa t ion  t i m e .  

For substances whose magnetic suscep t ib i l i t y  i s  small, the  required magneti
zat ion M i s  achieved over a r a the r  long time t 2 t ,  ( f o r  water, which i s  fre
quently used i n  t h e  sensors of proton magnetometers, t h e  quantity t, = 3 sec) .  
The p o s s i b i l i t y  of increasing t h e  magnetization M by increasing t h e  f i e l d  
s t rength  To i n  t h e  exc i t ing  c o i l  i s  l imited by t h e  poss ib le  power consumption of 
t he  instrument and by t h e  appearance of t r ans i en t s  i n  the  magnetizing c i r c u i t  
( i n  a f i e l d  To > 200 oe) .  After switching off  t h e  exc i t ing  f i e l d  To, t h e  macro
scopic magnetic moment of t h e  working body begins t o  precess  f r e e l y  about t h e  
measured f i e l d  T, with a frequency w. To f ind  t h e  la t ter ,  t h e  frequency of t h e  
voltage w induced i n  t h e  same c o i l  switched t o  t h e  input  of an amplifier i s  
measured. The amplitude of t h e  var iab le  emf excited by t h e  f i e l d  decreases with 
time by an exponential law,  i n  conformity with t h e  decrease i n  t h e  macroscopic 
magnetic moment of t h e  working body. Consequently, t h e  s igna l  amplitude U 
a r i s i n g  i n  t h e  c o i l  i s  equal t o  

t 

U=Uoe % ,  (lO.VII1) 

where Uo = Icl.tToTT sin“8 i s  t h e  i n i t i a l  s igna l  amplitude, k i s  a constant de
pending upon t h e  c o i l  parameters, t i s  t h e  time from t h e  i n s t a n t  of cutoff  of 
t h e  exci t ing f i e l d ,  and 8 i s  t h e  angle between t h e  f i e l d  s t rengths  T and To. 

We see from eq.(s.VIII) t h a t  t h e  accuracy of determining t h e  f i e l d  s t rength  
by this method i s  determined by t h e  accuracy of measuring t h e  precession fre
quency CI) and by t h e  r e l i a b i l i t y  of knowing t h e  gyromagnetic r a t i o  and t h e  
quantity a. For example, f o r  water t h e  r e l a t i v e  e r r o r  o f ’de temin ing  t h e  quan
t i t y  r(l - 0 )  i s  7.5 x . T h i s  permits measuring a f i e l d  with a s t r eng th  of 
T = lo4 - l o 5  gamnas with an  e r r o r  of not more than 0.1 - 1gamma, i f  t h e  rela
t i v e  e r r o r  of measuring t h e  precession frequency i s  of t h e  same order, i.e., 
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*loT4% (Bibl.15). The block diagram of t h e  nuclear magnetometer (Fig.7.VIII) 
contains a sensor S ,  an exci t ing ba t t e ry  B furnishing t h e  polar iza t ion  cur- /195 
ren t  (up t o  severa l  amperes), an amplifier A, and a t r ansmi t t e r  T r  whose fre
quency i s  modulated by t h e  sensor s ignals .  

Fig.7.VIII Block Diagram of Nuclear Magnetometer. 

O u r  own nuclear magnetometer AYaAM-6, designed along s imi la r  l i n e s  
(Bibl . l ) ,  has t h e  following basic  technica l  cha rac t e r i s t i c s :  measuring limits 
46,000 - 56,000 y,  measurement e r r o r  &1 y at  a measuring time of 1see and &2 y 
at a measuring time of 0.5 sec. 

The method of measuring t h e  magnetic f i e l d  on t h e  bas i s  of nuclear induc
t i o n  has t h e  following important features: 

1. The results of t h e  measurements are absolute.  
2. 	 The accuracy of measuring t h e  f i e l d  i s  high and i s  detemLned only by 

t h e  accuracy of measuring t h e  frequency. 
3 .  	The sensor and measuring channel are t h e o r e t i c a l l y  free from zero 

d r i f t .  

However, complications arise when using this method on space vehicles  which 
hamper the  measurements and increase t h e  e r ro r .  The causes of these complica
t ions  are as follows: 

1. The precession frequency does not depend on t h e  o r i en ta t ion  of t h e  ex-* 
c i t i n g  c o i l  with respect t o  t h e  vector  of t h e  measured f i e l d  s t rength T, but t h e  
amplitude of t h e  s igna l  i s  proport ional  t o  s in”  8 and, at  a small angle 0 ,  i s  
c lose  t o  zero. 

2. Upon ro t a t ion  of t h e  c o i l  together  with t h e  c a r r i e r  at  a rate of 
d t  

about an axis perpendicular t o  t h e  c o i l  axis, t h e  f i e l d  w i l l  be measured with an 
e r r o r  

dcp ( l l .VII1)AT = +3.7-
dt ’ 

where T i s  expressed i n  gammas and -drp i s  expressed i n  rad/sec (Bibl.15).
d t  
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3. There i s  a strong dependence of t h e  results on ex terna l  noises,  causing 
f i e l d  gradients  i n  the  sensor. 

4. The amplifier of t h e  magnetometer should ensure a s u f f i c i e n t l y  high 1196 
signal-to-noise r a t i o  i n  a broad frequency band. 

5. There i s  l a rge  power consumption, and t h e  measurements have a d i s c r e t e  
character.  The former drawback i s  caused by the  endeavor t o  obta in  a suf f ic ien t 
ly high signal-to-noise r a t i o  a t  t h e  output of t h e  sensor. Thus, f o r  a signal
to-noise r a t i o  equal t o  12  i n  a proton magnetometer designed f o r  measurements on 
board a satell i te i n  the  wide range of 15 - 55,000 gamnas and having an ampli
f i e r  passband of t h e  order of 1600 cps, a po la r i za t ion  power of about 200 w i s  
required (Bibl.15). The la t te r  drawback can be eliminated by using methods of 
dynarnic polar iza t ion .  

Sect ion 7. Optical  P m i n E  Method 

T h i s  method i s  based on measuring t h e  resonance frequency of s p l i t t i n g  
energy l e v e l s  of atoms i n  a magnetic f i e l d .  T h i s  i s  done by o p t i c a l  punping i n  
an auxi l ia ry  magnetic f i e l d  whose frequency i s  brought t o  resonance and measured. 

It i s  known t h a t ,  f o r  atoms located i n  a magnetic f i e l d ,  s p l i t t i n g  of t h e  
energy l e v e l s  i n t o  several  sublevels occurs (Zeeman e f f e c t ) ;  t h e  atoms. acquire 
an addi t ional  angular momentum determined by t h e  magnetic quantum number m. The 
i n t e n s i t y  of t h e  process of s p l i t t i n g  t h e  atomic l e v e l s  depends upon t h e  f i e l d  
s t rength T, s ince  the  Zeeman frequency coincides with t h e  Lamor frequency of 

precession of e lectrons determined by t h e  formula v = 	
(JJL - eT 

a 28 cps/y . 
2 n  2nmc 

To measure the  resonance frequency, population of one of t h e  energy sublevels by 
atoms and then t h e i r  resonant t r a n s i t i o n  t o  another sublevel are effected.  The 
population of t h e  sublevel i n  t h e  vapors of alkali metals and of c e r t a i n  gases 
[for example, helium (Bibl . l9)]  can be accomplished by op t i ca l  pumping. For 
this, a chamber i s  f i l l e d  usually with the  vapors of t h e  m y s t  r ead i ly  boi l ing
a l k a l i  metal, rubidium ( t b  = 15% at a pressure of p = 10- mm Hg) and i s  ir
radiated by c i r cu la r ly  polarized r ad ia t ion  whose frequency coincides with the  
frequency of t r a n s i t i o n  from one energy l e v e l  t o  another. 

The diagram of t h e  energy l e v e l s  of t h e  atom RbS7, at  various magnetic 
f i e l d  s t rengths  T, i s  shown i n  Fig.8.VIII. 

The quantity v, which i s  t h e  relative excess of atoms a t  one l e v e l  i n  com
parison with t h e  number, i s  ca l led  t h e  pumping parameter. I n  a state of thermal 
equilibrium, t h e  pumping parameter f o r  a lower sublevel  m of alkali metals i s  
equal t o  v = - 10- (Bibl.19). 

If t h e  vesse l  with t h e  rubidium vapors i s  i r r a d i a t e d  by a monochromatic 
beam of rad ian t  energy with a wavelength corresponding t o  t h e  absorption l i nes ,  
c i r cu la r ly  polar ized (corresponding t o  Am = +1)and d i rec ted  d o n g  t h e  magnetic
f i e l d ,  t h e  absorption of rad ian t  energy causes t r a n s i t i o n  of t h e  atoms from /197 
state Zsl ,a  t o  state 2,,,, and a corresponding increase  by +1 of ' sub leve lm.  
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Reverse t r a n s i t i o n  of atoms i s  poss ib l e  t o  any subleve l  of t h e  ground state 
s ince  t h e  se l ec t ion  rule i n  t h e  first case has t h e  normal Am = +1,and i n  t h e  
second Am = 0, Am = +1, o r  Am = -1. 

The state 2p1,2 does not contain t h e  level m = +3, and the re fo re  t r a n s i t i o n s  
from t h e  state 2s1,2 m = +2 t o  a higher sublevel are impossible. A t  this sub
l e v e l ,  continuous accumulation of atoms occurs under t h e  e f f e c t  of opticalpump
i n g .  F q e r i e n c e  has shown t h a t  i n  this manner it i s  poss ib l e  t o  obta in  a pump
i n g  parameter v equal t o  0.99, i.e., t o  populate t h e  sublevel m = +2 by 99% 
(Bibl.19). In  this state, rubidium vapors - f o r  a l l  p r a c t i c a l  purposes - w i l l  
no longer absorb rad ian t  energy i n  t h e  given s p e c t r a l  band. The rubidium chamber 
becomes transparent and a pho toe lec t r i c  c e l l  i n s t a l l e d  behind i t  records maximum 
i r rad iance .  If a weak variable magnetic f i e l d  i s  exc i ted  with a frequency c lose  
t o  resonant (Lamnor frequency) and i s  d i r ec t ed  perpendicular t o  a constant f i e l d ,  
then under t h e  e f f e c t  of t h e  var iab le  f i e l d  t h e  atoms w i l l  begin t o  pass  from 
t h e  level 2sl,2, m = +2 t o  lower sublevels and t h e  process of absorption of radi

a n t  energy W i l l  be res tored .  The most rapid t r a n s i t i o n  of atoms from t h e  sub
l e v e l m  = +2 t o  t h e  sub leve lm = +1 w i l l  occur when t h e  t r a n s i t i o n  frequency co
inc ides  with t h e  frequency of t h e  var iab le  f i e l d  so  t h a t  absorption ~ 1 1be most 
i n t ense  at this i n s t a n t .  Thus, from t h e  m i n i m u m  i r r ad iance  of t h e  photoe lec t r ic  
c e l l  we can determine t h e  resonant frequency v of t h e  variable magnetic f i e l d ,  
which depends upon t h e  state of t h e  atomic energy l e v e l s  and thus on t h e  con
s t a n t  f i e l d  s t r eng th  T. The decrease i n  t h e  s igna l  of t h e  photoe lec t r ic  c e l l  
may amount t o  80% (Bibl.22). 

Fig.8.VIII Diagram of Ihergy Levels 
of t h e  Rubidium Atom. 

The presence of nuc lear  sp in  i n  atoms of alkali metals leads  t o  a non- /198
l i n e a r  dependence of t h e  resonant frequency v on t h e  ex te rna l  f i e l d  s t rength  T, 
having t h e  form 

y =B T +CT2, (12.VIII) 



where B and C are constants equal t o  28 cps/ga"a and 1.3 X cps/gamma f o r  
rubidium. 

The block diagram of t h e  simplest rubidium-vapor magnetometer (Fig.9.VIII) 
cons is t s  of a rubidium tube (1)rad ia t ing  l i g h t  under t h e  e f f e c t  of an electrode-
l e s s  discharge, focusing lenses  (2) and (9) ,  an in t e r f e rence  f i l t e r  (3) which 
passes only r ad ia t ion  a t  t h e  rubidium l i n e  h = 7948 #, a c i r c u l a r  p o l a r i z e r  (41,
chambers with rubidium vapors ( 5 ) ,  feedback c o i l s  ( 6 ) ,  a hase s e l e c t i o n  
c i r c u i t  ( 7 ) ,  a phase i n v e r t e r  (8), and a photoelement (10P with an  amplifier 
(11) 

T 

2 3 4 5 9 IO 

Fig .9 .VI11 Block Diagram of Rubidium-Vapor Magnetometer. 

The rad ian t  f l u x  passing through t h e  absorbing rubidium chamber s t r i k e s  
t h e  low-inertia photoe lec t r ic  c e l l .  The s igna l  of t h e  photoe lec t r ic  c e l l  pro
duces weak v ibra t ions ,  with a frequency c lose  t o  resonant (Lamor frequency). 
This i s  amplified with respect t o  voltage and fed  t o  the  phase-selection c i r c u i t  
which exc i tes  o s c i l l a t i o n s  of t h e  a d l i a r y  magnetic f i e l d  (with an amplitude of 
severa l  hundreds of garrunas) i n  t h e  feedback c o i l .  I n  turn ,  this causes fluctua
t ions  i n  the  i n t e n s i t y  of t h e  rad ian t  f l u  and i n  t h e  s igna l  of t h e  photo
e l e c t r i c  c e l l .  The phase-selection c i r c u i t  ensures ad jus t ing  t h e  o s c i l l a t i o n s  
t o  the  resonant frequency v .  The la t te r  i s  a measurable quantity and i s  trans
mitted over t h e  telemetry system. When t h e  d i r e c t i o n  of t h e  magnetic f i e l d  i s  
reversed, t h e  p o s s i b i l i t y  of changing t h e  current phase i n  t h e  feedback c o i l  by 
means of an inve r t ing  c i r c u i t  (8) i s  provided. 

Studies of t h e  instrument (Bib1.22) show t h a t  t h e  opteum signal-to-noise 
r a t i o  i s  obtained when t h e  l i g h t  beam i s  a t  an angle of 45 t o  t h e  magnetic 
f i e l d  vector. Therefore, instruments were  l a te r  developed i n  which a double.gas 
chamber with a crossed o p t i c a l  system was  used. Equipment of this type in- /199 
s t a l l e d  on t h e  W l o r e r - X  along with a ferroprobe magnetometer (Bib1.22), was  
ab le  t o  measure t h e  resonant frequency v without switching phases i n  any di
rec t ion  of t h e  magnetic f i e l d .  

Section 8. M e t h o d  of __ Saturated- SensorsFerroDrgbes o r  MagneticaLly __ -

M z p e t i c a l l y  sa tura ted  sensors convert t h e  s t r eng th  of t h e  measured mag
n e t i c  f i e l d  i n t o  an e l e c t r i c  quantity (voltage o r  cur ren t )  by means of an aux
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i l iary f i e l d .  Here, use i s  made of t h e  nonl inear i ty  of t h e  change i n  permea
b i l i t y  of soft-metal a l loys  i n  a magnetizing f i e l d ,  which causes the  t o t a l  mag
n e t i c  f l u x  i n  the  sensor t o  vary. Soft-magnetic a l loys  belong t o  t h e  group of 
ferromagnetic materials, f o r  which reason such sensors are ca l led  ferroprobes. 

1 I 
e 

Fig.lO.VII1 Diagram of a Ferroprobe Sensor. 

The most widely used ferroprobes are those with two cores (usual ly  Permal
loy) ,  with exc i ta t ion  c o i l s  w1 (Fig.lO.VII1) supplied by an a l t e rna t ing  current,  
and a common search c o i l  WZ. 

The current amplitude of t h e  exc i ta t ion  c o i l s  i s  selected so  t h a t  t h e  core 
material i s  per iodica l ly  brought t o  a state of sa tura t ion .  The c o i l s  w1 are so 
designed t h a t  t he  f i e l d s  T, they exc i te  i n  t h e  cores are equal but i n  opposite 
d i rec t ions .  Therefore, i n  t h e  absence of core magnetization by an external  
f i e l d ,  no emf i s  induced i n  the  search co i l .  

I n  t h e  presence of an external  f i e l d ,  whose s t rength  vector  pro jec t ion  i n  
axial d i rec t ion  of t h e  cores 1and 2 i s  equal t o  To, a mgnet iz ing  f i e l d  i s  
added t o  the  a l t e rna t ing  f i e l d .  The s t rength  ac t ing  on t h e  cores 1and 2 will 
be d i f f e ren t ,  namely, 

TI =T ,  +To, 
T ,  =T ,  -To. (13.VIII) 

A s  a result of t h e  e i n  magnetic f l u x  i n  t h e  first core ( su f f i - /200 
c ien t ly  high load , an emf arises i n  t h e  search c o i l  equal t o  

where n i s  t h e  number of loops i n  t h e  measuring c o i l ,  s i s  t h e  cross-sectional 
area of t h e  core, @1 and B1 are t h e  magnetic f lux and magnetic induction i n  the  
first half-cell .  

The induction B1, which depends on t h e  f i e l d  s t rength  TI ,  can be expanded 
i n  a series, l imi t ing  t h e  series t o  three  terms f o r  small magnitudes of t h e  ex
t e r n a l  f i e l d  To 

(15.VIII) 
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Subst i tut ing t h e  obtained expression i n t o  eq. ( l4.VIII)  Will'y ie ld  

(16 .VIII) 

A similar expression can be obtained f o r  t h e  emf a r i s ing  i n  t h e  search 
c o i l w 2  as t h e  r e s u l t  of t h e  change i n  magnetic flux i n  t h e  second ha l f -ce l l  

A s  a consequence of t h e  opposed connection of t h e  exc i ta t ion  co i l s ,  t h e  
t o t a l  emf' W i l l  be equal t o  the  difference e2 - e l  

d!Ld dT, 
e =2ATOdt (""-) d p d  --ATodT-

d T ,  =2AToz - + dt ' (18.V I I I )  

where B,= B1 = E2 i s  t h e  induction i n  any of t h e  half-cel ls  when they are 
iden t i ca l ,  and p d  i s  t h e  d i f f e r e n t i a l  permeability. It follows from 
eq.(l8.VIII) t h a t  t h e  emf, whose magnitude i s  proport ional  t o  the  ex terna l  f i e l d  
strength,  arises only when t h e  curve of t h e  magnetic reversa l  of t h e  core i s  

dP d
nonlinear -# 0) .  The s e n s i t i v i t y  of t h e  sensor depends on t h e  cross

dT
sec t iona l  a rea  of t h e  cores and on the  nmnber of loops i n  the  search co i l .  

Since, a t  symmetric magnetic reversa l  of ferromagnetic materials, t h e  /203
dpdd i f f e r e n t i a l  permeabili ty P d  changes a t  double frequency, t h e  der iva t ive  
d t  

a l s o  changes at  double frequency. Consequently, t h e  output emf e has a fre
quency twice as high as t h e  exc i t ing  f i e l d T,. This i s  i l l u s t r a t e d  f o r  a sinu
so ida l  exci t ing f i e l d  by t h e  curves i n  Fig.ll.VII1. A consideration of a l l  
terms of t h e  series (15.VIII) l eads  t o  t h e  conclusion t h a t  t h e  output voltage 
should include an e n t i r e  spectrum consis t ing of even harmonics, where t h e  am@
tude of any even harmonic of t h e  emf l a rge ly  depends on t h e  exci t ing f i e l d  
s t rength  and t h e  core parameters. The p o l a r i t y  of t h e  emf generated by t h e  
sensor i s  determined by t h e  d i r ec t ion  of t he  f i e l d  component being measured. 

The average value of t h e  output voltage at  half-wave r ec t i f i ca t ion ,  i n  con
formity with Fig.ll.VII1 and eq.(18.VIII), w i l l  be 
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( 19. VrII) 
' U 

ll.d win 

where P i s  t h e  per iod  of t h e  o s c i l l a t i o n ;  KU i s  t h e  voltage amplification f a c t o r  
of t h e  measuring c i r c u i t  preceding t h e  phase de tec tor .  

Taking i n t o  account t h a t  w d  = O and wd "ax = m ( t h e  quantity m i s  
ca l led  t h e  mode permeabili ty) and t h a t  t h e  e x c i t a t i o n  period P i s  correlated 

with t h e  frequency of t h e  exc i t ing  f i e l d  w over t h e  r e l a t i o n  w = -2rr , we ob
t a i n  P 

0 

UZiV = 2k"AT0--m. (20 . V I I I )n 

It follows from this expression t h a t  t h e  output voltage Ua, i s  independent 
of t h e  amplitude of t h e  exc i t ing  f i e l d  and t h e  charac te r  of t h e  curve of t h e  
magnetic r eve r sa l  of t h e  core. 

With t h i s  method of connecting t h e  c o i l s  w1 and w2, uneven harmonics theo
r e t i c a l l y  should be completely compensated i n  the  search c o i l ,  and t h e  even 
harmonics should be added. Thus, t h e  sensor i s  a converter of t h e  measured mag
n e t i c  f i e l d  i n t o  t h e  emf of even harmonics whose amplitudes are propor t iona l  t o  
t h e  f i e l d  strength.  An analys is  (Bibl.2) shows t h a t  t h e  r a t i o  of these  ampl i 
tudes depends upon t h e  amplitude of t h e  exc i t ing  f i e l d :  with an increase  i n  t h e  
l a t t e r ,  t h e  higher even harmonics increase  and t h e  lower harmonics decrease. 
Therefore, during operation a t  any one of t h e  even harmonics it i s  necessary t o  
appropriately s e l e c t  and s t a b i l i z e  t h e  amplitude of t h e  exc i t ing  f i e l d .  

Instruments operating on t h e  second harmonic are widely used, s ince  they 
permit an optimum signal-to-noise r a t i o  (Bibl.7, 19). /202 

In  conformity with t h e  above statements, t h e  block diagram of a single-
channel second-harmonic ferroprobe magnetometer (Fig .12.VIII) contains a sensor 
S, a generator G v  supplying t h e  exc i t ing  c o i l w l  of t h e  sensor, a se l ec t ive  
amplifier A a v  tuned t o  t h e  double exc i t a t ion  frequency, and a phase-sensitive 
r e c t i f i e r  PSR whose output voltage i s  fed  across  the  matching amplifier A t o  t h e  
telemetry system PTC. The s e l e c t i v e  element i n  t h e  c i r c u i t  ensures separation 
of t h e  second harmonic and suppression of t h e  noise. The la t te r  i s  due mainly 
t o  nonideal balancing of t h e  sensor, as a result of which t h e  exc i t ing  f i e l d s  
i n  t h e  cores are compensated incompletely and odd harmonics occur i n  t h e  s igna l .  
The phase-sensitive elements serve t o  determine t h e  phase of t h e  second harmonic 
and, consequently, t h e  d i r e c t i o n  of t h e  vec tor  of t h e  measured f i e l d .  

We note  t h a t  t h e  emf of t h e  second harmonic of t he ' s enso r  almost always 
contains odd harmonics which, owing t o  phase d i s t o r t i o n s ,  lead t o  n u l l  ins ta 
b i l i t y  of t h e  magnetometer. 

R.I.Yanus e t  a l .  (Bibl.2) praposed using t h e  sum of even harmonics of t h e  
emf output of t h e  sensor i n  a magnetometer. However, t h e  presence of odd har
monics i n  this case does not permit strong amplification of t h e  s igna l  (owing t o  
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sa tu ra t ion  of t h e  amplif ier) ,  which i s  needed f o r  measuring weak f i e lds .  

e l d  

F’ig.ll.VII1 Relation between Sinusoidal 
Exciting Field,  Changes of Magnetic 

Induction B, and Di f f e ren t i a l  
Permeability p d  of t h e  Core. 

When it i s  necessary t o  measure t h e  magnetic f i e l d  s t rength  over a wide 
range a t  su f f i c i en t ly  high s e n s i t i v i t y  and accuracy (up t o  0.05 - O.l%), /203
t h e  n u l l  (compensation) method of measurement can be used. I n  t h a t  case, t h e  
sensor i s  equipped with an aux i l i a ry  c o i l  w3 wound on top of t h e  search co i l .  
A t  s t a t i c  balancing, tne s igna l  after r e c t i f i c a t i o n  and addi t iona l  amplif icat ion 
i s  fed t o  t h e  co i lw3 ,  producing a balancing f i e l d .  The balanced current  i s  the  
measured quantity. A reversing motor, s h i f t i n g  t h e  slide-wire of a potentio
meter which regulates  the  balanced current,  i s  used i n  a s t a t i c  balancing c i r 
cu i t s .  

To measure t h e  t o t a l  vector  of t h e  f i e l d  s t rength  T, magnetometers with 
three mutually perpendicular sensors are used. They can be of t h e  self-or ient
ing  type. I n  this case, t h e  sensors are attached t o  t h e  surface of t h e  or ien t+  
t i o n  u n i t .  The sensor i n s t a l l e d  perpendicular t o  t h e  surface i s  t h e  measuring 
sensor. The o ther  two ly ing  i n  t h e  plane of t h e  surface serve t o  p lace  it pe

183 


‘I 




pendicular  t c  t h e  t o t 2 1  vector  of t h e  f i e l d .  Equipment of this type (SG-45) was 
used on t h e  t h i r d  sa te l l i t e  (Bib1.9). Its shortcoming i s  t h e  presence of a 
complex mechanical or ien t ing  s y s t e m .  Unoriented magnetometers, i n s t a l l e d  on 

.oriented or unoriented capsules, measure t h e  f i e l d  components along three axes 
x, y, and z. The modulus of t h e  t o t a l  vector  i n  this case i s  determined by a 
computer connected t o  t h e  output of t h e  instrument or i s  calculated from the  
formula _ _ _ _ ~  -

T =1/ T t  + T t  + T: . (21.VIII) 

The accuracy of measurement with an automated instrument, however, i s  low 
s ince  t h e  e r r o r  of t h e  squaring elements amounts t o  +5%within a wide s igna l  
range (Bibl.8). Therefore, equipment with magnetically saturated sensors has 
t h e  following important cha rac t e r i s t i c s :  

1 1 
S A2V PSR RTS 

t I 

F'ig.12.VIII Block Diagram of a Single-Channel 
Second-Harmonic Ferroprobe Magnetometer, 

1. ant inoise  features when operating i n  a l a rge  complex of measuring 
and aux i l i a ry  onboard equipment; 

2. 	p o s s i b i l i t y  of continuous measurement of t h e  t o t a l  vector or of /2O4
t he  magnetic f i e l d  s t rength;

3.  	less power consumption, lower weight, and smaller s i z e  than nuclear 
magnetometers. 

The basic shortcoming of equipment with magnetically saturated sensors i s  
the  r e l a t i v e  character  of t h e  da ta  and t h e  zero d r i f t .  

Section 9. One-Component Ferroprobe Magnetometer 

Let us next discuss  the  cha rac t e r i s t i c s  of constructing t h e  e lec t ronic  
c i r c u i t s  of ferroprobe magnetometers on t h e  example of t h e  simplest  one-compo
nent instrument whose p r inc ipa l  wiring diagram i s  given i n  Fig.13.VIII. 

The de tec tor  of t h e  instrument D has cores made of'Permalloy 80NKhS of 
0.1 x 1.5 x 50 mm dimensions (permeability IJ. = 3OO,OOO, coercive force  H, E 

= 0.01 oe). The exci t ing c o i l s  w1 each have 1000 loops of PEV 0.12 wire and t h e  
search c o i l  w2 has 2500 loops of PELShO 0.1 wire (Bibl.2). The measuring c i r 
c u i t  of t h e  i n s t w e n t  i s  assembled i n  accordance with t h e  block diagram i n  
Fig.12.VIII. 



B 

Fig.13.VIII P r inc ipa l  Wiring Diagram of Ferroprobe 
Magnetometer. 

The e x c i t a t i o n  o s c i l l a t o r  f o r  t h e  sensor and reference voltage of t h e  phase 
de t ec to r  i s  based on a push-pull c i r c u i t  with capac i t ive  feedback, on junction 
t r a n s i s t o r s  T1 and T2. The r e s i s t ance  R1 ad jus t s  t h e  phase r e l a t i o n  when set
t i n g  t h e  o s c i l l a t o r  t o  minimum content (of t h e  order of 0.2%) of even harmonics. 
The frequency of t h e  generated voltage i s  2 kc. 

The push-pull broadband amplifier of t h e  s i g n a l  of t h e  even harmonics /205
produced by t h e  de t ec to r  i s  composed of junction t r a n s i s t o r s  T3 and T4 i n  a 
c i r c u i t  with a common emitter. The amplifier load i s  a transformer t o  whose 

The r e s i s t ances  connected i n t o  t h e  emit-output t he  phase de t ec to r  i s  connected. 

t e r  c i r c u i t s  of t h e  t r a n s i s t o r s  and shunted with respec t  t o  t h e  va r i ab le  compo

nent ensure thermal s t a b i l i z a t i o n  of t h e  c i r c u i t .  

The advantages of t h e  amplifier push-pull c i r c u i t  used i n  t h e  instrument 
include: less p o s s i b i l i t y  of appearance of spurious even harmonics i n  t h e  ampli
f i e r  i tsel f ,  and decrease i n  nonlinear d i s t o r t i o n s  a t  l a r g e  power ampl i f ica t ion  
of t h e  s igna l .  The amplified s i g n a l  i s  fed  t o  t h e  bases of t h e  t r a n s i s t o r s  i n  
opposition, so t h a t  t h e  cu r ren t s  flowing i n  t h e i r  c o l l e c t o r  c i r c u i t s  produce 
t h e  t o t a l  e f f e c t s  of magnetization of t h e  transformer core. A t  t h e  same time, 
t h e  constant components of t h e  c o l l e c t o r  cur ren ts  produce mutually opposite ef
f e c t s  of magnetization of t h e  core. Thanks t o  this, sa tu ra t ion  i s  not achieved 
and nonlinear d i s t o r t i o n s  are eliminated. 

The phase de t ec to r  i s  composed of nonlinear semiconductor r e s i s t ances  (NSR) 
of a symmetric t e whose conductivity depends on t h e  magnitude of t h e  applied 
voltage (Bib1.16y 

We can show (Bibl.16, 17) t h a t ,  i f  t h e  sum of two va r i ab le  voltages U1 + 
+ U2 i s  fed  t o  t h e  NSR, t h e  r e c t i f i c a t i o n  e f f e c t  of one of t hese  appears. I n  
this case, only voltages (harmonics) f o r  which a c e r t a i n  frequency r a t i o  ~1 and 
w 2 ' i s  s a t i s f i e d ,  are r e c t i f i e d .  For NSR ( v a r i s t o r s )  wi th  a nonl inear i ty  of t h e  
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third order, t h e  necessary r a t i o  w i l l  be - 2 or 1/2. T h i s  property of NSR 

W 2  

i s  used i n  t h e  phase-sensitive de t ec to r  of t h e  magnetometer, f o r  b e t t e r  dis
crimination of t h e  s i g n a l  from t h e  noise  background. 

We note t h a t  t h e  use of NSR i s  espec ia l ly  e f f e c t i v e  i n  c i r c u i t s  of second-
harmonic magnetometers. 

The c i r c u i t  includes a negative feedback across  t h e  r e s i s t ance  Ra;  changing 
t h e  magnitude of this r e s i s t o r  permits regula t ion  of t h e  measuring range of t h e  
magnetometer. 

According t o  t h e  d a t a  by Yu.V.Afanas'yev (Bibl.2) an  instrument constructed 
i n  this manner has a measurement e r r o r  of not more than  10 y i n  a +lo00 y range. 

Sec t ion  10. Measurement Procedure 

To monitor t h e  zero of ferroprobe magnetometers, standard (usua l ly  proton) 
magnetometers, which are pe r iod ica l ly  compared, are used. 

Cal ibra t ion  of t h e  magnetometers (with respec t  t o  each channel) i s  done by 
a system of Helmholtz c o i l s  which produce a homogeneous and previously known /206 
magnetic f i e l d  i n  t h e  de t ec to r  of t h e  magnetometer. Each p a i r  of t h e  c o i l s  has 
two windings: t h e  main winding f o r  producing a f i e l d  of a spec i f ied  s t r eng th  
and a compensating winding which cancels t h e  corresponding component of t h e  ex
t e r n a l  f i e l d  s t r eng th  (of t h e  ear th ,  e tc . )  . The magnitude of t h e  magnetic f i e l d  
s t r eng th  a t  t h e  cen te r  of a given p a i r  of c o i l s  i s  determined by t h e  formula 

MwiTo =- (22 . V I I I )  
r '  

where w i s  t h e  number of t u rns  of t h e  winding on t h e  c o i l ,  i i s  t h e  current 
s t r eng th  measured by t h e  instrument, r i s  t h e  rad ius  of t h e  winding, and M i s  
an experimentally determined constant. 

The ca l ib ra t ion  curves of t h e  channels of t h e  ferroprobe magnetometers 
proved t o  be l i n e a r  with a high accuracy. 

The de tec to r s  of this equipment are i n s t a l l e d  on a s p e c i a l  boom outs ide  t h e  
capsule at a s u f f i c i e n t  d i s tance  from noise  sources. The bulk of t h e  constant 
magnetic i n t e r f e rence  created by t h e  permanent magnets on t h e  instrument within 
t h e  capsule can be compensated by i n s t a l l i n g  s p e c i a l  balancing temperature-
compensated magnets attached near t h e  base of t h e  boom. The t o t a l  magnetic 
i n t e r f e rence  (devia t ion)  from t h e  uncoqensated f i e l d s  of t h e  container, under 
given working conditions, i s  determined experimentally f o r  each de tec tor .  For 
example, f o r  t h e  ferroprobe instrument on t h e  first spacecraft ,  t h e  t o t a l  de
v ia t ion  with respect t o  each of t h e  de t ec to r s  d id  not exceed 70 y (Bibl.4) a t  a 
s e n s i t i v i t y  of 600 y p e r  v o l t  obtained with respect t o  t h e  telemetry system. 

The zero d r i f t  of t h e  magnetometers amounts t o  seve ra l  gammas an hour 
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[20 gammas i n  2%. hrs  on t h e  first spacecraft  and maxi" d r i f t  of seven g m a s  
p e r  hour on t h e  second, where t h e  equipment had an approximately four-fold sen
s i t i v i t y  (Bibl.4, S ) ] .  In this connection, t h e  s t a b i l i t y  of t h e  n u l l  po in t  of 
t h e  magnetometers i s  controlled.  The procedure of cont ro l l ing  t h e  operation of 
magnetometers during f l i g h t  on uns tab i l ized  objec ts  (Bibl.5 - 9 )  i s  based on 
t h e i r  ro t a t ion ,  s ince  s igna l s  caused by magnetic devia t ion  and zero d r i f t  of 
r i g i d l y  attached de tec to r s  are independent of o r i en ta t ion  of t h e  capsule and t h e  
pro jec t ion  of t h e  ex terna l  f i e l d  onto t h e  de t ec to r s  changes with t h e  frequency 
of r o t a t i o n  of t h e  capsule. 

The threshold s e n s i t i v i t y  (and t h e  absolute e r r o r )  of equipment used under 
labora tory  conditions can be reduced t o  seve ra l  gammas. It proves t o  be less 
than 20 - 30 gammas under t h e  operating conditions on capsules of spacecraft  
(Bibl.5, 7) .  



PART 111 

MEASUREMENTS I N  THF: O P T I C A L  RANGE 

The o p t i c a l  range encoqasses  t h e  X-ray, u l t r a v i o l e t  (W),  visible, and /2O7 
i n f r a red  (IR)regions of t h e  radiant  energy spectrum. The v i s i b l e  region i s  
bounded by wavelengths from 0.38 t o  0.76 p. To i t s  l e f t  l ies  Jhe spec t r a l  re
gion encompassing u l t r a v i o l e t  radiant  energy (from 0.38 t o  10- p o r  from 3800 
t o  100 a), X-rays (from 100 t o  0.1 8) and y-rays ( shor te r  than 0.1 8)- t o  i t s  
r igh t ,  t h e  inf ra red  region, which extends from 0.76 t o  350 IJ. (0.35 m). 

CHAPTEE IX 

MEASURDENTS OF X-RAY AND ULTRAVIOLET RADIANT m R G Y  

Section 1. Charac ter i s t ics  of ESnissions Sub,ject t o  Measurement 

The u l t r a v i o l e t  region of t h e  spectrum i s  usual ly  divided i n t o  t h e  near 
(3800 - 3000 I ) ,  far (3000 - 2000 A), and vacuum-ultraviolet (2000 - 100 1)

X-radiation i s  divided i n t o  hard (0.1 < h < 1 i),s o f t  (1K 

(10< h < 100 1) (Bib1.1). 

The p r inc ip l e s  and apparatus f o r  measuring hard X-radiation and y-radia
t i o n  are t h e  same i n  both cases. They have been described earlier (see Chapt.V) 
so  t h a t  we w i l l  here d iscuss  the  methods of measuring rad ian t  energy only i n  
the  region from 1t o  3800 8. 

The p r inc ipa l  na tu ra l  source of rad ian t  energy i s  t h e  sun whose s t ruc tu re  
markedly a f f e c t s  t h e  character  of t h e  emission. 

Let us  r e c a l l  t h a t  t h e  s o l a r  atmosphere cons is t s  of three layers:  a) t h e  
photosphere, severa l  hundred kilometers i n  thickness which determines t h e  
v i s i b l e  d isk  of t h e  sun; b)  t h e  chromosphere, surrounding t h e  photosphere with 
a r ing  -10,000 km in thickness, and c )  t h e  corona, t h e  discharged and much /208 
more heated ex terna l  atmosphere of t h e  sun which extends over mil l ions of kilo
meters. 

The rad ia t ion  of t h e  abyssal strata of t h e  sun migrates outward as a re
sult of numerous a c t s  of absorption and re-radiation; with i t s  approach t o  t h e  
photosphere, i t s  maxi" spec t r a l  i n t e n s i t y  gradually shifts i n t o  the  region of 
longer wavelengths. The v i s i b l e  continuous spectrum of solar rad ia t ion  emitted 
by t h e  photosphere has a t o t a l  i n t e n s i t g  c lose  t o  t h a t  of a black-body radia
t i o n  spectrum at  a temperature of -6000 K. A t  shor te r  wavelengths (A < 4000 l),
t h e  i n t e n s i t y  of solar r ad ia t ion  decreases more rapidly,  as i s  implied by 
Planck's law. 
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Fig.1.m Solar Radiation i n  t h e  Vis ib le  and Shortwave 
Spectrum Regions. 

1 and 2 - Upper and lower limits of X-ray region;
3 - Region of u l t r a v i o l e t  l i n e  spectrum;
4 - Visible region; 5 - Beginning of 

i n f r a red  region. 

The f a r  and vacuumul t rav io le t  r ad ia t ion  of t h e  sun, emitted ch ie f ly  by t h e  
chromosphere and corona, i s  characterized by t h e  presence of br ight  l i n e s  
aga ins t  t h e  background of a comparatively weak continuous spectrum. A particu
l a r l y  marked decrease i n  i n t e n s i t y  of t h e  continuous spectrum and a t r a n s i t i o n  
t o  a l i n e  spectrum, more or less, are observed for wavelengths h shor t e r  
t h a n  -1500 8 (F ig .1 .D) .  I n  t h e  X-ray region, p a r t i c u l a r l y  f o r  h < 20 8, a 

/2oq 

spec t r a l ly  continuous r ad ia t ion  flux again begins t o  predominate; i t s  i n t e n s i t y  
depends g rea t ly  on t h e  state of t h e  sun. 

The presence of a continuous emission spectrum s i d e  by s ide  d t h  a l i n e  
spectrum i s  a t t r i b u t a b l e  t o  t h e  physics of t h e  glow of high-temperature plasma. 
Let us consider t h e  emission of hydrogen, an  element which p lays  a highly im
por tan t  r o l e  i n  a l l  processes occurring on t h e  sun. 

The emission spectrum of excited hydrogen atoms cons i s t s  of a series of 
l i n e s  produced by t h e  t r a n s i t i o n s  of e lec t rons  t o  allowed energy levels. Elec
t r o n  t r a n s i t i o n s  from upper l e v e l s  t o  t h e  level wi th  t h e  quantum number n = 2 
form t h e  so-called Balmer series. Many of t h e  Lines i n  this series are located 
i n  the  v i s i b l e  region (Ha with  h = 4.863 8, and o thers ) .  

Trans i t ion  of e l ec t rons  t o  t h e  low level  n = 1results i n  t h e  emission of 
Lyman-series l i n e s .  

I n  t h e  process of t r a n s i t i o n  of an e l ec t ron  from t h e  o r b i t  ni t o  t h e  o r b i t  
n, which i s  loca ted  c l o s e r  t o  t h e  nucleus, an energy of 
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i s  released, where R i s  Qdberg's constant. 

Equation (1.D) .implies t h a t  t h e  wave numbers (cm-' ) of t h e  Lyman series 
are determined by t h e  formula 

-h
1 
= 1.09. lo5( 1 --)n: 

1 . 
(2 .M) 

These l i n e s ,  as can be seen from eq.(2.=), are located i n  t h e  u l t r a v i o l e t  
region of t h e  spectrum. The l i n e  from t h e  Lyman series La with h = 1215.7 8, 
which i s  t h e  most in tens ive ly  emitted by t h e  sun, corresponds t o  t h e  t r a n s i t i o n  
from t h e  l e v e l  ni = 2 t o  t h e  l e v e l  n = 1. Photometric s tud ie s  by Purce l l  and 
Tousey (Bibl.20) show t h a t  about 94% of t h e  t o t a l  rad ia t ion  i n t e n s i t y  i n  the  
spec t r a l  range from 1050 t o  1350 a i s  emitted i n  t h e  l i n e  La. The spec t r a l  
width of this l i n e  i s  of t h e  order of 1 8, as can be seen from Fig.2.X. An ab
sorpt ion nucleus i s  c l e a r l y  v i s i b l e  a t  t h e  center  of t h e  l i n e  (decrease i n  
densi ty  P of t h e  spectrogram); this i s  due t o  t h e  absorption of s o l a r  rad ia t ion  
by t h e  hydrogen of ou ter  space. 

The presence i n  t h e  s o l a r  spectrum of X- and y-radiation i s  due t o  t h e  de
ce le ra t ion  of t h e  high-energy electrons [with an energy of E, = 1Mev and higher 
(Bibl. l7)]  emitted by t h e  i n t e r n a l  region. 

P r e l .  u n i t s  

Fig.2.IX P r o f i l e  of Lyman Line. 

The emission of a continuous spectrum i s  a t t r i b u t a b l e  (Bibl.20) t o  "free
free" and "freebound" e lec t ron  t r ans i t i ons ,  i.e., t o  decelerat ion and capture 
of e lec t rons  during t h e i r  i n t e rac t ion  with nuclei  of various elements, ch ie f ly  
with protons. I n  both cases, any amount of e n e r a  may be emitted; t h e  m 
energy emitted i n  t h e  lat ter case Will be higher t h e  lower t h e  l e v e l  at  which 
t h e  e lec t ron  i s  captured. It i s  t h e  combined emission of many p a r t i c l e s  t h a t  
leads t o  a continuous spectrum. Capture of free e lec t rons  a t  t h e  l e v e l  n = 2 
leads t o  t h e  emission of - i n  addi t ion t o  t h e  Balmer series - a continuous spec
t r u m  termed t h e  Balmer continuum. The Lyman continuum i s  of similar or igin.  A s  
can be seen from t h e  eq.(2.IX), this starts with t h e  wave number 1.09 x 
x l o5  cxn-l(h = 920 a) and continues i n t o  t h e  region of shor te r  wavelengths. 

The e lec t ron  temperature of t h e  solar atmosphere var ies  widely with alti-



- ,  

tude; from about 5000'K i n  t h e  lower chromosphere t o  1- 2 X 10"'K i n  t h e  inner 
corona (Bibl.20). A s  a result, v i r t u a l l y  a l l  t h e  atoms i n  t h e  corona are ion
ized. The wavelengths of t h e  r a d i a t i o n  or ig ina t ing  t h e r e  are determined by t h e  
charge of t h e  nuc le i  and t h e  degree of t h e i r  ion iza t ion .  Hence, t h e  short-wave 
spectrum of t h e  sun, emitted by t h e  chromosphere and t h e  corona, contains a 
l a r g e  number (more than 200) emission l i n e s .  For example, l i n e s  of Fe ions  i n  
various ion iza t ion  states (up t o  Fe XVI) as well as of Ca ions, e t c .  have been 
i d e n t i f i e d  i n  this spectrum. The b r igh te s t  l i n e s  of t h e  short-wave s o l a r  spec
trum and t h e i r  f lux dens i t i e s ,  as taken from t h e  d a t a  of G.M.Nikol'skiy 
(Bibl. l7),  are presented i n  Table l.M. For comparison, note t h a t  t h e  f l u x  
dens i ty  of t h e  continuous spectrum i n  t h e  900 - 1300 1 region i s  of t h e  order of 

erg-cm-" *sec-l 8-l . 

FLUX DENSITY F FOR THE BRIGHTEST UNES I N  THE 
SHORT-WAVE EMISSION SPECTRUM OF THE SUN 

. 

A i  
- .  . . 

2795.5and2S02.7 18 
18 17.4a nd 1SOB. O about  1 

1215.7 3-6 
303.8 0.3-1.6 

The i n t e g r a l  energy dens i ty  i n  the  X-ray region outs ide  t h e  confines of 
t h e  atmosphere i s  comparatively low (not more than 1erg-cm-2=sec-1 ), whereas 
t h e  energy of t h e  e n t i r e  region of t h e  s o l a r  spectrum amounts t o  1.3 X /211 
x 10" erg-cm-" 'set at  t h e  top of t h e  atmosphere (Bibl.13). A l a r g e  p a r t  of this 
energy i s  absorbed by t h e  upper atmosphere and expended on various geophysical 
processes and, p a r t i c u l a r l y ,  on t h e  formation of t h e  ionosphere. 

The o p t i c a l  "Window" of t h e  ear th ' s  atmosphere extends roughly from 2900 t o  
l&O,OOO 8.  Therefore, solar r a d i a t i o n  shor t e r  than  2900 4 cannot be measured 
from t h e  ear th .  Measuring apparatus must be l o f t e d  t o  a l t i t u d e s  which can be 
estimated with t h e  a i d  of F ig .3 .a .  This diagram shows t h e  a l t i t u d e s  above t h e  
ear th ' s  surface a t  which t h e  r a d i a t i o n  f l u x  of a given wavelength i s  a t tenuated  
e times compared with i t s  value a t  t h e  top of t h e  atmosphere [when t h e  sun is  
at  t h e  zeni th  (Bibl.20)l. A t  t h e  same time, t h e  graph p l o t s  t h e  p a t t e r n  of 
va r i a t ion  i n  the  transparency of t h e  atmosphere as a func t ion  of wavelength and 
ind ica t e s  t h e  p r i n c i p a l  absorbing components of t h e  atmosphere. It can be seen 
from F'i.g.3.m t h a t  t h e  sharp boundary of t h e  solar spectrum i n  t h e  neighborhood 
of t h e  ear th ' s  sur face  i s  due t o  absorption by t h e  ozone l a y e r  ( i n  t h e  Hartley 
and Higgins bands). Although t h e  thickness of t h e  ozone l a y e r  i n  t h e  atmosphere 
i s  only 2 mn when r e f e r r e d  t o  pressure  at  sea level, t h e  decimal a t t enua t ion  
f a c t o r  of rad ia t ion ,  e.g. i n  the, neighborhood of 2500 1 (Hartley band) reaches 
a0 (Bibl.13) . 
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In p a r t  of t h e  vacuum-ultraviolet region (1000 5 h 2 2000 A), absorption 
i s  dependent ch ief ly  on molecular oxygen which, as a result, d i ssoc ia tes  (bands 
1102 - 1110, 1800 - 2000, -U58, 1B9 1, etc . ) .  

\ 

Fig .3. IX Penetrat ion of Solar  Radiation i n t o  t h e  Atmosphere. 
1- Lyman l i n e s  and continuum. 

It should be noted t h a t ,  during t h e  per iods of high solar ac t iv i ty ,  t h e  
rad ia t ion  i n t e n s i t y  i n  t h e  X-ray region sharply increases  [by a f a c t o r  of sev
eral t ens  i n  p a r t  of t h e  2 - 20 1 region (Bibl.17)l. In  this case i t  reaches 
t o  even lower a l t i t udes ,  as shown i n  Fig.3.X. /212 

The i n t e n s i t y  of s o l a r  rad ia t ion  rapidly decreases with decreasing t h e  
wavelength < 1300 8. Thus, t he  f l u x  densi ty  i n  t h e  3000 - 2000 1 spec t ra l  ?e
gion ( a t  t h e  a l t i t u d e  of 30 - 40 km) i s  approximately 2 x lo4 erg-cm-2.sec- -3- i n  
t he  2pOO - 1300 1 region ( a l t i t u d e s  of 50 - 125 km), it i s  about 260 erg-cm 
*see- ; i n  t h e  1300 - 8 region ( a l t i t u d e s  of 70 - l40 km), of t h e  order of -1 

10 ergecm-" *set- ; and i n  t h e  h < 10 region, from lo-" t o  lo-* ergoem-" *see 
(Bibl.17). 

The temperatures o f .  an absolutely black body, emitt ing t h e  above-specified 
energy f luxes i n  t h e  short-wave region, are r e l a t i v e l y  l o w  (< 5500'K f o r  h < 
< 3000 4 ) .  Thus, t h e  spec t r a l  and energy temperatures i n  this region do not eo
inc ide  -

Other na tu ra l  sources of short-wave rad ia t ion  are characterized by markedly 
smaller fluxes. Thus, t h e  d i f fuse  glow i n  t h e  l i n e  LQ cha rac t e r i s t i c  of t h e  
e n t i r e  night sky, has an i n t e n s i t y  of 3 X 10-3erg*cm-2 0sec-l ster-' (Bibl.lO), 
w h i l e  t h e  flux i n  t h e  u l t r a v i o l e t  region 1230 5 h 5 1350 8, from t h e  b r igh te s t  
nebula located i n  t h p  neighborhood of t h e  Constel la t ion of Orion, i s  2 x 
x lo+ ergocm-" *see- at  t h e  top of t h e  atmosphere. The measured r ad ia t ion  
f luxes  from t h e  stars i n  the  La l i n e  do not exceed this'magnitude (Bibl.10, 20). 
Thus, depending on t h e  spec t r a l  region and t h e  inves t iga ted  source, t h e  sensi
t i v i t y  and measurement limits of t h e  apparatus must d i f f e r  markedly. 

Measurements of radiant  f luxes  i n  the  short-wave region are necessary t o  
e lucidat ing t h e  basic  proper t ies  and features of t h e  upper atmosphere and outer  
space. For example, solar r ad ia t ion  i n  t h e  so-called ionizing region of t h e  
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spectrum ( A  < 1000 1) i n  strong l i n e s  such as La and penetrat ing r ad ia t ion  ( A  < 
< 10 8 )  considerably a f f e c t  t h e  state of t h e  ionosphere and t h e  operating condi
t i o n s  of ground-based and orb i ted  m e a n s  of rad io  c o m d c a t i o n s .  An extremely 
important fac tor ,  which must be taken i n t o  account i n  manned space f l i g h t s ,  a l s o  
t o  ensure t h e  operating r e l i a b i l i t y  of KA equipment, i s  the  rad ia t ion  produced 
by t h e  emission of penetrat ing r ad ia t ion  from t h e  sun ( c f .  Chapt.V, Sect .1). 

Most valuable experimental da ta  may be obtained with t h e  a id  of spec t r a l  
instruments. However, d i f f i c u l t i e s  i n  ca l ib ra t ing  t h e i r  energy sensors [ f o r  
spectrographs, t h e  e r r o r s  reach +150 - 200% (Bibl.l7)1 as w e l l  as t h e i r  consi
derable weight, l a rge  dimensions, and high power requirement of ten  discourage 
t h e  use of these instruments. 

I n  this connection, comparatively simple f i l ter  instruments, used f o r  meas
urements of r ad ia t ive  fluxes i n  the  most important and s u f f i c i e n t l y  narrow spec
t r a l  in t e rva l s ,  are widely employed. These instruments, i n  turn,  are c l a s s i f i e d  
according t o  t h e  type of de tec tor  used (thermoluminescent phosphor, secondary-
electron mul t ip l ie r ,  ion iza t ion  de tec tor ) .  

Section 2. Instruments with Thermoluminescent Phomhor fa 
The operation of instruments i n  this group i s  based on t h e  p r inc ip l e  of 

thermoluminescence which cons i s t s  i n  t h a t  c e r t a i n  substances - t he  phosphors of 
Cam,(&), CaC03, MgO and o thers  - are capable of s tor ing  up t h e  energy of 
short-wave rad ia t ion  when i r r a d i a t e d  and releasing this energy i n  t h e  v i s i b l e  
region of t h e  spectrum when heated. 

Invest igat ions (Bibl.1, 2) es tabl ished t h a t  t he  " l igh t  sum", i .e. t h e  num
ber of t he  emitted l i g h t  quanta, i s  proport ional  t o  t h e  energy of t h e  exci t ing 
short-wave emission ac t ing  on t h e  surface of t h e  phosphor during i t s  exposure. 
T h i s  pa t te rn ,  however, does not apply i n  the  presence of extremely high in tens i 
t ies  of t he  exci t ing f lux  and long durations of exposure. 
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It should be noted t h a t  t h e  l i g h t  sum does not r e f l e c t  t h e  s p e c t r a l  distri
bution of t h e  exc i t i ng  r ad ia t ion  but merely provides information on i t s  t o t a l  
energy. 

Thermoluminescent phosphor of Cas, ac t iva t ed  by t h e  manganese of CaS04(Mn), 
has found p r a c t i c a l  app l i ca t ion  i n  United S t a t e s  and Soviet  instruments 
(Bib1.11). T h i s  compound d isp lays  a number of valuable q u a l i t i e s  which permit 
i t s  use f o r  absolute measurements of short-wave r ad ian t  energy. 

The magnitude of t h e  relative quantum y i e l d  T I r e l  of t h e  CaSO,(Mn) phosphor, 
i n  percent with respect t o  one quantum of t h e  exc i t i ng  rad ian t  energy of various 
wavelen t h s  A ,  as based on t h e  da t a  by V.A.Arkhangelfskaya and T.K.Razmova 
(Bibl.1 7, i s  presented i n  F ig .4 .n .  The graph shows t h a t  t h e  r e l a t i v e  quantum 
y i e l d  continuously increases  with decreasing wavelength. A t  t h e  same time, t h e  
s e n s i t i v i t y  of this phosphor c r y s t a l  decreases with decreasing wavelength from 
3 - 5 t o  0.2 - 0.4 8. T h i s  i s  a t t r i b u t a b l e  t o  t h e  absorption of both t h e  ex
c i t i n g  r ad ia t ion  i n  this wavelength range and of t h e  na tu ra l  r ad ia t ion  of t h e  
a c t i v e  l a y e r  [which i s  approximately 0.6 mm i n  thickness (Bib l . l ) I .  

An important feature of this phosphor c r y s t a l  i s  i t s  l ack  of s e n s i t i v i t y  t o  
rad ian t  energy at  wavelengths exceeding 1300 1. The efficiency rl of a phosphor 
c r y s t a l  with a f i l t e r  i s  i l l u s t r a t e d  i n  Fig.5a.I.X (Bibl.2). A s  we can see, /a
t h e  use of a U F  f i l t e r  makes it poss ib l e  t o  record almost exclusively energy i n  
t h e  region of t h e  & l i n e  (A = 1215.7 8) which, i n  t h e  s p e c t r a l  range of  1050 t o  
1220 8, accounts f o r  approximately 95% of t h e  energy of t h e  solar spectrum 
(Bibl. 20) . 
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Fig .5 .n  Efficiency of Sensor ( i n  Rela t ive  U n i t s )  with Various 
F i l t e r s  (a), and Temperature Dependence of Thermoluminescence 

i n  t h e  Presence of Uniform Heating (b).  
1- Ehergy released ( r e l a t i v e  units); 2 - Temperature curve. 

Inves t iga t ions  showed t h a t ,  i n  measuring t h e  i n t e n s i t y  of exc i t ing  radia
t i o n  over wide limits [example based on t h e  series (Bibl.11) of CaSO,(Mn)], no 
sa tu ra t ion  was found. 

The thermoluminescence spectrum of this phosphor has a s u f f i c i e n t l y  sharp 
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peak i n  t h e  green por t ion  of t h e  spectrum [ A  = 0.5 IJ. ( B i b l J ) ] ,  which i s  satis
f a c t o r i l y  detected by a photomultiplier with S b C s  photocathodes. 

The energy s tored by t h e  thermoluminescent phosphor, general ly  speaking, i s  
continuously released, but at  temperatures below about 6OoC t h e  energy release 
of CaS04(Mn) i s  s m a l l .  For example, Fig.5b.M indica tes  t h a t  i n  this case vir
t u a l l y  a l l  of t h e  s tored energy i s  already released a t  a temperature of approx
i m a t  e l y  200 OC . 

Let us e s t ab l i sh  a co r re l a t ion  between t h e  Darameters of am instrument with 
a thermoluminescent de tec tor  and t h e  dens i ty  F i f  t h e  exc i t ing  radiat ion.  The 
magnitude of t h e  lat ter i s  

rl 
(3.3a 

where Ft i s  t h e  densi ty  of t h e  f l u x  re leased by t h e  phosphor, and 7 i s  t h e  m e a n  
quantum yie ld .  

The area underneath t h e  curve of e n e r m  release C ( l i g h t  sum) i s  de- /215 
termined by t h e  output voltage U m t  of t he ins t rumen t  and by t h e  time T of t h e  
energy re lease  

0 0 

where  k is t h e  amplification f a c t o r  of t h e  measuring c i r c u i t .  

If t h e  current  across  t h e  load R 4  of t h e  photomultiplier i s  denoted by i 
and t h e  m e a n  quantum eff ic iency of t h e  photocathode with respect t o  phosphor 
emission by F ,  then, given an i d e a l  gathering of‘ l i g h t ,  we have 

where M i s  the  current  amplif icat ion f a c t o r  due t o  t h e  dynode photomult ipl ier  
system and s i s  the  sens i t i ve  area of t h e  phosphor (and photocathode). 

From eqs.(3 - 5.D),  we obta in  
T 


If t h e  i n t e n s i t y  of t h e  measured r ad ia t ion  i s  constant during t h e  measure
ments and i t s  spec t r a l  composition i s  homogeneous (mean frequency equal t o  V), 
we der ive t h e  formula f o r  determining t h e  densi ty  F i n  energy units 

195 

I 



where h i s  Planck * s constant 

Inaccuracies i n  determining t h e  parameters en ter ing  eq.( 7.IX) cause e r r o r s  
i n  measuring short-wave r ad ia t ion  by t h e  method considered here. It must be 
borne i n  mind t h a t  phosphors are a l s o  excited by y-rays and high-energy p a r t i 
c l e s ,  p a r t i c u l a r l y  by e lec t rons .  The presence of fluxes of such p a r t i c l e s  may 
a l s o  lead t o  e r r o r s  i n  r ad ia t ion  measurements. Thus, it has been es tab l i shed  
(Bibl.12) t h a t  t h e  s e n s i t i v i t y  of CaS04(Mn) phosphor t o  e lec t rons  equals i t s  
s e n s i t i v i t y  t o  X-ray quanta of t h e  same energies.  

I n  t h e  United S t a t e s  instruments based on t h e  use of CaS04(Mn) thermo
luminescent phosphors have been used i n  sounding-rocket measurements of short
wave and X-radiation wi th in  l imi ted  s p e c t r a l  ranges, i s o l a t e d  with t h e  a i d  of 
E F  and CaFa f i l t e r s  (Bib1.25). 
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Fig.6.X Block Diagram of Instrument 
with Thermoluminescent Detector. 

Specimens of phosphors exposed a t  high a l t i t u d e s  w e r e  de-excited i n  the  
laboratory,  following recovery of t h e  rocket.  The accuracy of measurements de
creases,  s ince  t h e  instrument capsule i s  heated during reent ry  causing some de
exc i t a t ion  (energy release) of t h e  phosphors. 

The block diagram of t h e  automatic instrument (Fig.6.IX) contains a maga
zine with p l a t e s  (1)successively advanced by means of a d i sk  i n t o  t h e  exposure 
pos i t i on  (2 )  (outs ide  t h e  entrance window) and i n t o  the  de-excitation pos i t i on
(3)  ( i n  t h e  neighborhood of t h e  heating element), as w e l l  as a photomultiplier 
u n i t  ( 4 )  and a cathode follower (5) .  

CaS04(Mn) phosphor was  implanted i n  Z r i f i c e s  d r i l l e d  i n t o  brass  p l a t e s ;  t h e  
o v e r a l l  s e n s i t i v e  surface area was 0.8 cm (Bib1.11). Both exposure t i m e  and ex
c i t a t i o n  time were 22 sec each. After de-excitation, t h e  p l a t e  was discarded 
and replaced with a new p l a t e  ex t rac ted  by t h e  d i sk  from t h e  magazine; this was 
repeated u n t i l  t he  supply of p l a t e s  was exhausted. 

Td ve r i fy  t h e  operating s t a b i l i t y  of t h e  instrument i n  f l i g h t  during t h e  
replacement of p l a t e s , t h e  replacing mechanism mounted i n  f r o n t  of t h e  photo
m u l t i p l i e r  a continuous-action luminous compound (Zn( Cu)) ac t iva ted  with t h e  
i so tope C1', with a luminescence peak i n  t h e  s p e c t r a l  region a t  A = 5200 8, i s  
used 

To i s o l a t e  emission i n  t h e  La region, t h e  entrance window of t h e  ins t ru
ment i s  covered with a E F  f i l t e r .  The range of f lux d e n s i t i e s  measured i n  this 

-1
region overlaps by one order of magnitudes, from 0.03 t o  0.3 erg*cm-2*sec 
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The angle of v i e w  of t h e  instrument i s  close t o  Zrr steradian.  

The e r r o r  i n  p l o t t i n g  t h e  ca l ib ra t ion  curve of t h e  instrument fo r  t h e  
vacuum W range i s  +55% and for t h e  X-ray range, +30;8. Errors i n  t he  ana lys i s  
of telemetered da ta  when determining t h e  l i g h t  sums do not exceed =k3O%, and t h e  
o ther  e r ro r s  do not exceed *lo%. 

The t o t a l  e r r o r  of flux measurement f o r  t h e  above instrument thus reaches 
+loo% (B ib l . l l )  . 

It should be noted t h a t  i n  f l i g h t  t h e  instrument was strongly influenced by 
t h e  electrons of corpuscular fluxes with energies of t h e  order of 1- 10 Kev 
(Bib1.22). 

Section 3 .  Apparatus with Ionizat ion Sensors 

Owing t o  i ts  s implici ty ,  high accuracy and r e l i a b i l i t y ,  instruments with 
ion iza t ion  sensors a r e  used widely i n  upper-atmosphere measurements, par t icu lar 
l y  i n  the  USA (Bibl.10, 20). The sensors may be gas-discharge counters o r  ion
i za t ion  chambers. They are so  designed as t o  meet the  requirements f o r  ion- /217 
i z a t i o n  sensors and a t  t h e  same t i m e  t o  ensure t h e  required e f f ic iency  (sensi
t i v i t y )  i n  the  spec t r a l  region concerned. 
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Fig.?.= $zantum Yield of Photon Counters 
with Mylar Windows (Sol id  E n e )  

and Glyptal  Windows (Broken Ene) .  

The most suitable f i l l i n g  gases f o r  such sensors, f r o m t h e  viewpoint of a 
number of propert ies ,  are t h e  i n e r t  gases He, N e ,  Ar, K r ,  and Xe,  whose ioniza
t i o n  thresholds correspond t o  507, 577, 591, 890, and 1027 8, according t o  Fried-
man (Bibl.20). These gases may be used in combination with various quenching 
agents: hydrocarbons (vapors of a lcohol  o r  e ther ) ,  hal ides  (chlor ine o r  bromine) 
or n i t r i c  oxide. 

On exposure t o  short-wave rad ia t ion ,  photoelectrons leading t o  ion iza t ion  
of t h e  gas may s t r i k e  not only t h e  gas but a l so  t h e  walls of t h e  sensor. E i ther  
e f f e c t  may predominate, depending on t h e  spectrum region of t h e  measured radia
t ion ,  t h e  composition and pressure of t h e  f i l l i n g  gas mixture, and t h e  design 
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of t h e  sensor. 

I n  t h e  region of s o f t  and u l t r a s o f t  X-rays (1 < A < 100 a), t h e  main r o l e  
i s  played by photoelectrons emitted by t h e  f i l l i n g  gas, s ince  t h e  photoe lec t r ic  
y i e l d  of any material i s  low i n  this region. By se l ec t ing  t h e  f i l l i n g  gases i n  
t h e  sequence spec i f ied  above and varying t h e i r  pressure,  sensors with d i f f e r e n t  
s p e c t r a l  sens i t iveness  are obtained. 

The quantum y i e l d  of photon counters with Mylar f i l t e r  ( C l 0 I % O 4 )  windows 
(0.73 mg/cmz f i lm  thickness) ( s o l i d  l i n e )  and with g l y p t a l  f i l t e r  window 
(0.18 mg/cm f i l m  thickness) (Bibl.20), i s  shown i n  Fig.7.D. The counters 
(diameter, 2 em) were  f i l l e d  with H e  and e t h y l  formate a t  a pressure of p = 
= 750 rmn Hg. 

The values of t h e  s p e c t r a l  s e n s i t i v i t y  71 of SBT-9 type counters (Bibl.16) 
w i t h  windows of beryll ium f o i l  and mica (along with aluminum shielding aga ins t  
UV r ad ia t ion )  a r e  ind ica ted  i n  Fig.8.Z. 

The former ( w i t h  Be-foil windows), as we can see, operate i n  t h e  range of 
approximately 5 t o  80 - 120 8, and t h e  lat ter,  of 1- 2 t o  10 - 12 8. 

The curves d i s t i n c t l y  revea l  t h e  absorption bands of X-rays by carbon 
(- 43 A ) ,  oxygen (- 22 8 )  and alminum (- 8 a). The absorption band for beryl
lium is  d i s t a n t  from t h e  region considered, so t h a t  t h e  curve of t h e  s p e c t r a l  
s e n s i t i v i t y  of a beryllium-window counter has a smooth slope.  1218 

For t h e  UV region of 100 t o  1000 i,f o r  wEL,Ich s u i t a b l e  materials do not 
e a s t ,  it i s  poss ib l e  t o  employ windowless sensors with a continuously flowing 
gas  which should be se lec ted  according t o  t h e  ion iza t ion  p o t e n t i a l  (Bibl.20). 

In t h e  region of longer wavelengths A > 1027 i,t h e  s p e c t r a l  characteris
t i c s  of t h e  sensors begin t o  be determined by t h e  e x t e r n a l  and i n t e r n a l  photo-
e f f e c t s  of t h e  cathode material. The threshold of t h e  i n t e r n a l  photoeffect f o r  
t h e  materials employed l ies i n  t h e  region of 1000 < h 1500 1(Bibl.20). The 
ex terna l  photoeffect a l s o  manifests i tself  i n  a more d i s t a n t  region, where t h e  
f lux of s o l a r  r ad ia t ion  rap id ly  increases .  

The quantum ef fec t iveness  of t h e  ion iza t ion  sensors used i n  t h e  
1500 - 3000 1 region i s  determined by t h e  photoeffect at  t h e  cqthode surface 

/219 
and i s  comparatively small ( t h e  quantum y i e l d  being - 10- e lec t rons  p e r  
quantum). 

Instruments wi th  ion iza t ion  sensors have found broad application. I n  par
t i c u l a r ,  i on iza t ion  chambers with LiF and CaF2 filters f o r  measuring solar emis
s ion  i n  t h e  La-line and o thers  with a beryllium window f o r  measurements of solar 
X-radiation have been used on t h e  Vanguard-I11 and Fkplorer-VI1 a r t i f i c i a l  ea r th  
satellites (Bibl.10, 20). 

kt us consider t h e  apparatus widely used i n  measurements of t h e  solar X-
rad ia t ion  on geophysical rockets and spacecraf t  by S.L.Mandelfshtam, B.N. 
Vasilfyev, and o thers  (Bibl.16). They employed standard SBT-9 type counters 
with a mica or beryllium window. The sensor u n i t  consisted of s eve ra l  ( 2  t o  6) 
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Fig.�?.= Spectral  Sens i t i v i ty  of Counters with B e r y l l i u m  ( a )  
and Mica (b)  Windows. 

i d e n t i c a l  counters required t o  ensure a s u f f i c i e n t l y  long observation of t h e  
sun ( i n  t h e  absence of an o r i en ta t ion  system) and t o  record the  background radi
a t ion  ac t ing  on t h e  counters whose f i e l d  of v i e w  happens t o  exclude t h e  sun. To 
reduce t h e  background due t o  t h e  p a r t i c l e s  of corpuscular fluxes, magnetic 
shielding was used i n  some cases ( a  var ian t  of this shielding i s  i l l u s t r a t e d  i n  
F ig .9 .a ) .  When t h e  f i e l d  i n t e n s i t y  i n  t h e  gap between t h e  constant magnets (1) 
i s  of t h e  order of 1000 oersted,  shielding of this kind i s  e f f ec t ive  f o r  elec
t rons  with energies of up t o  20 Kev (Bibl.16). The Windows of t h e  measuring 
and background counters (2) i n  such a device have an angle of v i e w  of about 4.5' 
and are or iented i n  various d i rec t ions .  The s ide  surfaces of t h e  counters were 
protected by a lead shielding of approxha te ly  2 mm thickness against  brems- /220 
strahlung a r i s i n g  i n  t h e  casing of t h e  sensor u n i t  (Bibl.16). 

The load cha rac t e r i s t i c  of t h e  counters used i s  shown i n  Fig.lO.IX, indi
cating t h a t  this cha rac t e r i s t i c  droops sharply a t  a counting rate of N ss 
= lo3  - 10 pulses/sec. T h i s  i s  a t t r i b u t a b l e  t o  t h e  recombination of gaseous-
mixture ions,  which r e s u l t s  i n  a decrease i n  t h e  working volume of t h e  counter 
i n  t h e  presence of a high i r r a d i a t i o n  in t ens i ty .  Over t h e  range from 0.1 t o  
l o 3  pulses/sec, as can be seen from Fig.lO.IX, t h e  counter performs almost per
f ec t ly .  

The measuring channels of a l l  t h e  counters were based on t h e  same c i r c u i t s .  
A block diagram of one of these  i s  shown i n  Fig.ll.IX. The pulses  generated by 
t h e  recorded quanta i n  t h e  photon counter PhC proceed t o  t h e  pulse  shaper PS 
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which standardizes them with respect t o  t h e  amplitude and durat ion required f o r  
a r e l i a b l e  performance of t h e  f l ip-f lop sca l ing  c i r c u i t  which cons is t s  of K in
termediate and n mean-frequency scanned f l ip - f lops  (FFI and F m ) .  The state of 
t h e  mean-frequency f l ip - f lop  elements i s  recorded via separating s tages  S by a 
memory device MD with a d iurna l  memory volume which performs the  scanning once 
every three minutes. 

I 

Fig .9 .n  Magnetic Shielding of End-Window 
Photon Counters. 

F’ig.lO.IX Counting Rate N as a Function 
of t h e  In t ens i ty  I of I r r a d i a t i o n  

(Rel. U n i t s )  of a Gas-Discharge Counter. 

The t o t a l  capacity of t h e  scal ing c i r c u i t  of t h e  measuring channel of t h e  
device i n s t a l l e d  i n ,  e.g., t h e  second spacecraf t  was 2“’ pulses.  Recording i n  
MD was car r ied  out from 20 f l ip-f lop elements. T h i s  made it possible ,  i n  t h e  
presence of a three-dn;te scanning cycle, t o  record the  mean pulse  counting 
rate from 0.1 t o  5 x 10 pulses/sec (Bib1.16). 

Provision was a l so  made f o r  t h e  p o s s i b i l i t y  of d i r e c t  fp-mmission of t h e  
pulse  counting rates within t h e  range from 0.5 t o  2 x 10 pulses/sec.  To 
tkis end, t he  outputs of f i v e  f l ip - f lop  elements (FFM1 - FFM,) were’ connected t o  
t h e  adder c i r c u i t  AC. 

The sensor u n i t  was mounted outs ide and connected by a cable t o  t h e  /221
measuring c i r c u i t  housed within an a i r t i g h t  capsule. 
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F i g . 1 l . n  Block Diagram of Measuring 
Channel of Counter. 

The p r inc ipa l  components of t h e  measuring channels (F ig .1 l . n )  are of t h e  
same t r ans i s to r i zed  type; t h e  spec ia l  features of t h e  measurements required t h e  
development of spec i f i c  c i r c u i t s .  

Fig.12.n Ci rcu i t  Diagram of 
Photon Counter. 

The c i r c u i t  diagram of t h e  photon counter i s  shown i n  Fig.12.Z. The feed 
voltage ( U f e e d )  i s  fed across  c u r r e n t - l h i t i n g  r e s i s t o r s  R1 which are shunted by 
t h e  capaci tor  C 1  t o  enhance t h e  amplitude of t h e  received pulses .  The output 
pulses  (of negative p o l a r i t y )  are tapped from t h e  secondary winding of t h e  
matching transformer T r l  connected t o  t h e  cathode c i r c u i t  of t h e  counter. The 
transformer makes it poss ib le  t o  t ransmit  t h e  output s igna l  over a cable of con
s iderable  length ( a s  long as 10 m) and t o  u t i l i z e  a shaping device with a low 
input  res is tance.  To eliminate t h e  o s c i l l a t i o n s  a r i s i n g  during t h e  passage of 
current ulses across the  transformer (owing t o  t h e  accumulation of energy by 
t h e  core7, t h e  transformer primary i s  shunted with a D1 diode (of t h e  DlOl type).  

The amplitude and shape of t h e  pulses  taken of f  t h e  photon counter are 
g r e a t l y  influenced by t h e  counter load, temperature, feed voltage, e tc .  The 
conversion of counter pu lses  t o  t h e  standard form, having t h e  amplitude and 
durat ion required t o  t r i g g e r  t h e  sca l ing  element, was accomplished with t h e  a i d  
of a shaping device containing a biased blocking o s c i l l a t o r .  

The resolving time of t h e  f l ip-f lop sca l ing  elements i s  4.0 - 50 psec. 
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To eliminate any t r igge r ing  of t h e  f l ip - f lop  elements during scanning by 
t h e  memory device, separating s tages  are mounted at  t h e  output of t h e  scanned 
f l ip - f lops ;  each of t hese  s tages  i s  represented by a t r a n s i s t o r  operating i n  t h e  
on-off regime, with two diode lirniters. The latter block t h e  admission of 
pu l se s  of any p o l a r i t y  t o  t h e  f l i p - f lop  c i r c u i t .  

The operation of this apparatus can be t e s t e d  with t h e  a i d  of rad ioac t ive  
i so topes  i n  t h e  same manner as when measuring cosmic r a d i a t i o n  ( c f .  Chapt.V). 
The processing of t h e  telemetered d a t a  i s  done i n  t h e  same way: The d i f fe rence  
i n  t h e  number of pu l se s  passed during three minutes, with an e r r o r  of not more 
than  =lo% i n  determining t h e  counting rate, i s  determined f o r  each channel. 

Section 4.  F i l t e r  Apparatus with Se,condary-Electron Mul t ip l i e r s  (SEN) /222-~- -

The operating p r i n c i p l e  of instruments with secondary-electron mul t ip l i e r s  
(SEM) i s  based on i s o l a t i o n  of various s p e c t r a l  regions of short-wave r ad ia t ion  
by means of a set of f i l t e r s  successively placed i n  f r o n t  of one and t h e  same 
receptor. The receptor  used i s  an open-type secondary-electron mul t ip l i e r ,  
represented by a system of diodes fabr ica ted  from a material with a high coef
f i c i e n t  of secondary-electron emission, which opera tes  under t h e  conditions of 
t h e  na tu ra l  vacuum of t h e  upper atmosphere. The r o l e  of t h e  rad ian t  energy re
ce iver  i s  performed by t h e  f i r s t  diode of t h e  SEM. 

SEN-based apparatus d isp lays  a number of advantages compared with ioniza
t i o n  receivers.  The advantages a re :  a ) p o s s i b i E t y  of using as f i l t e r s  a number 
of materials which do not meet t h e  requirements of vacuum density,  mechanical 
strength,  e t c .  made on t h e  materials t o  be used f o r  windows of i on iza t ion  
counters; b) measurement of any s p e c t r a l  region by means of a s ing le  rece iver  
whose s e n s i t i v i t y  i s  checked during each measurement cycle; c )  high s t a b i l i t y  of 
s p e c t r a l  c h a r a c t e r i s t i c s  of t h e  rece iver ;  and d )  lower s e n s i t i v i t y  of t h e  SEM t o  
t h e  background of cosmic rad ia t ion .  

This last  advantage i s  p a r t i c u l a r l y  s i g n i f i c a n t .  It i s  mainly due t o  t h e  
sharp decrease i n  s e n s i t i v i t y  of t h e  SEM i n  t h e  near -u l t rav io le t  s p e c t r a l  re
gion as w e l l  as t o  i t s  l o w  s e n s i t i v i t y  t o  hard X-rays, y-rays, and cosmic-ray 
p a r t i c l e s .  

Other i nves t iga t ions  (Bib1.22) show t h a t  t h e  optimum dynode materials from 
t h e  standpoint of maximizing these  advantages are Cu-Be a l loys ;  owing t o  selec
t i v e  oxidation, photosens i t ive  l a y e r s  of beryllium oxide Be0 Will form on t h e  
surface of t hese  a l loys .  

The s p e c t r a l  s e n s i t i v i t y  1 (e f f ic iency)  of t h e  SEM with t h e  widely used Be0 
photocathode, as based on s tud ie s  by A.I.Yefremov e t  a l .  (Bibl.7, 22) f o r  t h e  
regions of 1- 100 and 1000 - 3800 a i s  shown i n  Fig.13.Z (cor rec t  t o  within 
&60%). Thus, it can be seen t h a t  these  rece ivers  can be e f f ec t ive ly  used i n  the  
s o f t  X-ray and u l t r a v i o l e t  regions of t h e  spectrum where t h e  s o l a r  r ad ia t ion  
flux i s  so  small t h a t  t h e  apparatus can be expected t o  count each ind iv idua l  
photon. 

Su f f i c i en t ly  high s t a b i l i t y  with respect t o  ex terna l  e f f e c t s  (prolonged 
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s t a y  i n  air, in t ense  i r r a d i a t i o n ,  temperature f luc tua t ions ,  e tc . )  as w e l l  as 
s a t i s f a c t o r y  s e n s i t i v i t y  are a l s o  exhibited by dynodes of strontium f l u o r i d e  
SrFz and n icke l  (Bib1.22). 

The ampl i f ica t ion  f a c t o r  with respect t o  t h e  measuring-circuit voltage 
should not be too  high, s ince  t h e  pu l se  amplitude of t h e  SEM i s  s u f f i c i e n t l y  

/223 
l a r g e  

where q i s  t h e  charge accumulated by t h e  s t r a y  capacitance Cs of t h e  c i r c u i t  
during a s ing le  pulse ;  k i s  t h e  SEN ampl i f ica t ion  f ac to r ;  and e i s  t h e  e lec t ron  
charge . 

electron/quontun 


10-4 
I0..I\ 

\ 
10-6 - \ 
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Fig .13 .n  Spec t ra l  S e n s i t i v i t y  of SEN t o  100 1 ( a )  
and more than 1000 1 (b). 

For an SEM with Be0 dynodes2- i f  a 5000-v voltage i s  applied t o  it - we 
have k l o 7  (Bib1.22). If C, = 10 ppf ,  we have U = lo-” v. 

The dura t ion  of pulses  from each recorded quantum i s  shor t  [only t o  
lo-’ sec (Bibl.7) I .  

The f i l t e r  system i n s t a l l e d  i n ,  e.g., t h e  second spacecraft  (Bibl.8) con
ta ined  a d i sk  with a set of nine f i l t e rs .  Once every second, t h e  d i s k  ro t a t ed  
through 1/12 revolu t ion  so  t h a t  a new f i l t e r  moved i n  f r o n t  of t h e  receptor  
in take .  One-half of t h e  1 2  pos i t i ons  of t h e  d i sk  was o c c q i e d  by f i l t e rs  f o r  
i s o l a t i n g  t h e  X-ray and f a r -u l t r av io l e t  regions of t h e  spectrum. O f  t h e  re
maining pos i t ions ,  t h r e e  were occupied by quartz c r y s t a l  f i l ters  for i s o l a t i n g  
t h e  UV region of h > 1500 4 where t h e  solar emission i s  s t a b l e  and t h e  v a r i a t i o n  
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i n  t he  output s igna l  i s  due t o  t h e  va r i a t ion  i n  s e n s i t i v i t y  of t h e  apparatus or 
t o  t h e  va r i a t ion  i n  t h e  angle between t h e  o p t i c a l  a x i s  of the  SEM and t h e  ori
en ta t ion  toward t h e  sun. I n  one posi t ion,  a @-source (carbon isotope C14), de
signed f o r  aukonomous ve r i f i ca t ion  and ca l ib ra t ion  of s ens i t i v i ty ,  faced t h e  
SEN. The last two pos i t ions  served t o  check t h e  n u l l  po in t  of t h e  instrument. 
I n  this case, t h e  SEN in take  was covered with shut te rs ,  and standard s igna ls  
were transmitted t o  t h e  telemetry channel and u t i l i z e d  t o  determine the  onset of 
t h e  measurement cycle. 

I 
I 
I 
I 
I 
I 
I 
I 
I ' 1 +.-
I 
I 

II 

I 
I 

I 
I 
I E l

I I 
I I 

I 
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Fig&.= Block Diagram of Instrument with SEN. 

The block diagram of t h e  system i s  shown i n  Fig.L!+.IX. Each o p t i c a l  u n i t  
contains two SEM receivers  (4 ) ,  with f i l t e r  d isks  (7)  synchronously ro t a t ing  i n  
f ron t  of them. The SEN outputs are connected i n  p a r a l l e l  so as t o  enlarge t h e  
ove ra l l  angle of v i e w  of t h e  instrument. 

The t e t r ahedra l  so l id  angle of View of each SEN subtends 50 X 60' w h i l e  t h e  
angle between t h e  op t i ca l  axes of both receivers  i s  80'. This created a dead 
zone of 20' between t h e  f i e l d s  of View cy of t h e  receivers  i n  a s ing le  u n i t  
(Fig.&.=). 

The o p t i c a l  units contained preamplif iers  (5), step-up motors ( 6 )  f o r  t h e  
disks (7) and autonomous-connection sensors (10). The cont ro l  s igna l  was & 
transmitted from t h e  motor (6) across  t h e  l i n e  (9) .  The engine was powered from 
t h e  un i t  (15) over t h e  l i n e  (8). The recording c i r c u i t  PT (ll), mounted in s ide  
t h e  capsule, contained rapid-acting normalizing f l ip - f lop  c i r c u i t s  T and count
ing-rate meters CRM (12, 13, &). To enhance t h e  accuracy of measurements, 
each channel i s  provided with three series-connected CRM, each operating i n  a 
d i f fe ren t  frequency range. The outputs of t h e  CRM operating i n  t h e  same f re
quency ranges, and making connection with t h e  telemetry system RTS, were not 
separated. 

The operating range of t h e  CI3-f over t h e  l i n e a r  segment of t h e  output char
a c t e r i s t i c  could be adjusted by varying t h e  proportioning capacitance C,, (c f .  
Chapt V) 



The autonomous connection of power supply t o  this e n t i r e  u n i t ,  a t  least one 
of which faces  t h e  sun, i s  assured by autonomous connection sensors (10). 

Processing of t h e  da t a  necess i ta ted  cor rec t ions  f o r  t h e  v a r i a t i o n  i n  t h e  
s e n s i t i v i t y  and n u l l  po in t  of t h e  instrument; i n  accordance wi th  t h e  c a l i b r a t i o n  
curve f o r  a given CFN, t h e  magnitudes of U o u t  w e r e  then  converted t o  counting . 

rate N i n  pulses/sec f o r  t h e  s p e c t r a l  range concerned. 

Section 5. Spec t ra l  Devices 

A c h a r a c t e r i s t i c  component of any s p e c t r a l  device i s  a d ispers ing  system 
f o r  t h e  s p a t i a l  separation of rays of d i f f e r e n t  wavelengths. 

Depending on t h e  d ispers ing  system used, s p e c t r a l  devices are c l a s s i f i e d  
i n t o  prism and d i f f r a c t i o n  types; depending on t h e  method of spectrum recording, 
i n t o  spectrographs and spectrometers. 

So far, s p e c t r a l  i n t e r f e rence  devices which permit obtaining hyperfine 
s t ruc tu res  i n  a narrow spectrum range, have never been used on rockets and 
satell i tes.  

The basic components of a spectrometer are: an  o p t i c a l  focusing s y s t e m  wi th  
an entrance aperture usually of t h e  s l i t  type, a dispersing system, a s p e c t r a l  
recording uni t  (exit  s l i t  with a de tec to r  and a scanning system), an  amplifier 
u n i t ,  and a signal-shaping u n i t .  

The focusing op t i c s  of s p e c t r a l  instruments employing prisms or plane d i f 
f r a c t i o n  gra t ings  cons i s t s  of two lenses:  t h e  coll imating l e n s  01 and t h e  camera 
objec t ive  O 2  (Fig.15.m). The coll imating l e n s  O1 produces a p a r a l l e l  beam of 
rays t r ave l ing  from t h e  s l i t  t o  t h e  dispersing system D; t h e  entrance s l i t  s of 
t h e  spectroscope l i es  i n  t h e  f o c a l  plane of t h e  l e n s  01. Images of t h e  entrance 
s l i t  s are formed i n  t h e  f o c a l  surface P of t h e  camera objec t ive  02; each of /226 
these  images represents a s p e c t r a l  band ( l i n e )  and t h e i r  e n t i t y  gives the  spec
trum. The foca l  plane of t h e  objec t ive  O2 l i e s  a t  an angle c t o  t h e  o p t i c a l  
a x i s  of t h e  camera. 

R 

I?ig.lS.IX P r inc ipa l  Optical  Diagram of t h e  Spectral  
Instrument with Lens Optics. 

In  s p e c t r a l  devices, operating on an autocollimating c i r c u i t ,  when t h e  ray 
passes through t h e  d ispers ing  s y s t e m ,  one l e n s  takes  over t h e  r o l e  of both col
limating l ens  and camera objective.  
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I n  devices with concave d i f f r a c t i o n  gra t ings ,  focusing i s  accomplished by 
this same gra t ing  without addi t iona l -opt ics .  Such devices f ind  t h e  widest ap
p l i c a t i o n  i n  short-wave spectrum regions, w h i l e  i n  t h e  above-mentioned far-
u l t r a v i o l e t  regions t h e i r  use appears only p o t e n t i a l l y  poss ib le .  

The d ispers ing  system and focusing op t i c s  determine t h e  bas ic  characteris
t i c s  of t h e  s p e c t r a l  device. 2;et us b r i e f l y  d iscuss  these  cha rac t e r i s t i c s .  

1. Dimersion. The spacing of t h e  s p e c t r a l  l i n e s ,  d i f f e r i n g  by dh, i s  

characterized by an angular d i spers ion  Dcp = -dcp i n  terms of angular u n i t s  dcp 
dh 

and by an inverse  l i n e a r  d i spers ion  D = -dh i n  terms of l i n e a r  un i t sd4 ,  where 
dA 

t h e  dispersion i s  expressed by t h e  number of wavelengths (8) p e r  u n i t  length of 
t h e  spectrum ( i n  mm) . The inverse  l i n e a r  d i spers ion  D, ind ica ted  i n  Fig.15 .IX, 
i s  cor re la ted  with t h e  angular d i spers ion  Dcp by t h e  simple r e l a t i o n  

For prism-type spectroscopes (with t h e  prism i n  a minimum-deviation posi
t i o n ) ,  t h e  d ispers ion  i s  determined by t h e  r e f r ac t ing  angle A and by t h e  refrac
t ive index n = f ( h )  i n  accordance wi th  t h e  well-known formula 

2sin, A dn 

( 1 O . Z )  

The d ispers ion  of a system with several prisms equals t h e  sum of t h e  
dispersions of i t s  components. However, t h e  numbeli of prisms i n  the  system i s

/227 
l imi ted  by t h e  allowable lo s ses  during t h e  r e f l e c t i o n  and absorption of rad ian t  
energy. A decrease i n  t h e  angle of incidence of t h e  rays,  compared with t h e  
angle of minimum devia t ion  of t h e  prism leads  t o  an increase  i n  the  d ispers ion
9,which a l s o  involves an increase  i n  lo s ses  and aberration, ch ief ly ,  astigma
t i s m .  

The angular d i spers ion  of instruments with d i f f r a c t i o n  gra t ings  i s  de
termined by t h e  order K of t h e  recordable spectrum, t h e  l a t t i c e  constant a and 
t h e  d i f f r a c t i o n  angle cp, as shown by t h e  formula 

D - K 
cp- a cos cp (1l.IX) 

The maximum order K n a x  of t h e  d i f f r a c t i o n  spectrum i s  limited by t h e  condi
t i o n  s i n  (Pmax = 1, which implies t h a t  

aK,,, =----, (12.M)
Am 
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where A, i s  the  s m a l l e s t  wavelength i n  t h e  spectrum. 

A t  a = A, ,  only f i r s t -o rde r  spectra  can be obtained. 

The grat ings used i n  t h e  short-wave region with a l a t t i c e  constant of a = 
= 0.45 ~1 = 4.500 1 (1200 lines/mm) thus make it poss ib le  t o  obtain i n  the  short
wave region spectra  with an extremely l a rge  dispers ion (up t o  1l/mm f o r  K = 5 
and f a  = 10" cm). 

A t  normal incidence of rays  on the  gra t ing  ( c p  = Jr = O ) ,  t h e  dispers ion % 
i s  p r a c t i c a l l y  a constant (% = K). The r e su l t an t  spectrum i s  known as normal. 

a 
For  concave grat ings,  t h e  inverse l i n e a r  dispers ion i s  

D =  u 3 . w
a cos cp 

KP 

A t  normal incidence of rays, t h e  inverse dispers ion D i s  constant and equal 

t o  -a . For example, a t  a = 4.500 1, K = 1and p = 1m, we have D = 4.5 vm. 
KP , 

2. Resolution. The resolving power R with respect  t o  t h e  spectrum char
ac t e r i zes  	t he  least d is tance  between two adjacent spec t r a l  l i n e s  detected 

R i s  determined 
1228 


separately.  

length h of a given spec t r a l  l i n e  t o  t h e  resolving power Ah. I n  prac t ice ,  t h e  


Here, quant i ta t ive ly  as t h e  r a t i o  of t h e  wave-

least dis tance Ah between two resolvable spec t r a l  l i n e s  depends on t h e  sensi
t i v i t y  of t h e  rece iver  or photographic material, on t h e  d i f f r a c t i o n  i n  the  ef
fec t ive  aperture  of t h e  dispers ing system, on t h e  qua l i ty  of t h e  l ens  system, 
and on t h e  width of t h e  entrance s l i t .  On t h e  bas i s  of Rayleigh's d i f f r a c t i o n  
condition, %.e., a s s d n g  t h a t  a gap of approximately 20% i n  spec t r a l  i n t e n s i t y  
i s  recorded when using a device with an extremely t h i n  entrance sJit (Bibl.6), 
it i s  possible  t o  relate t h e  theo re t i ca l  resolving power R of t h e  dispers ion 
element t o  i t s  angular dispersion: 

where  d i s  t h e  e f f ec t ive  aperture  of t h e  dispers ing element. 

The reso lu t ion  of a system of b i d e n t i c a l  prisms, i n  a device with minimum 

( 1 5 . m  

deviation of t h e  prism, i s  equal t o  

dn
R = t b -
dh ' 

where t i s  t h e  basel ine of one prism. 

The resolving power of t h e  prisms thus changes with t h e  wavelength; it in
creases i n  the  short-wave region of t h e  spectrum. U s e  of prisms of l a r g e r  di
mensions (longer base t and l a r g e r  e f f ec t ive  aperture d)  increases  t h e  resolu

207 



t i o n  of t h e  instrument without changing t h e  l i n e a r  d i spers ion  and thus  augments 
t h e  brightness of 2he spectrum. The resolving power of prism spectrographs i s  
of t h e  order of 10 - lo4 (Bibl.6). 

The t h e o r e t i c a l  resolving power of a d i f f r a c t i o n  g ra t ing  f o r  a spectrum of 
a given order K i s  a constant and equal t o  

R = K N .  ( 1 6 . Z )  

To increase  t h e  r e so lu t ion  R, attempts are being made t o  incorporate i n  t h e  
devices large-size g ra t ings  with a l a r g e  number N of r u l i n g s  p e r  nun. 

For both t h e  u l t r a v i o l e t  and v is ib le  spectrum regions, g ra t ings  with 600 
or 1200 rulings p e r  mm and with a working ( ru l ed )  sur face  up t o  100 mm in  length  
are normally used (Bibl.10,417). The t h e o r e t i c a l  resolving power of g ra t ings  
of this kind reaches 6 x 10 and 1.2 X lo5, respectively,  already f o r  t h e  f i r s t -
order spectrum, as can be seen from eq.(20.M). 

Reflection g ra t ings  of t h e  echelon type, because of t h e  va r i a t ion  i n  pro
f i l e  of t h e  ru l ings ,  make i t  poss ib le  t o  concentrate nearly t h e  e n t i r e  r e f l e c t e d  
energy i n  a higher-order spectrum. TP t h e o r e t i c a l  resolving power of g ra t ings  
of this kind reaches approximately 10 i n  t h e  wavelength region h = 2000 1 /229
(Bibl.6). 

3.  Relative aDerture. The aper ture  r a t i o  of spectroscopes i s  character
ized  by t h e  magnitude of t h e  rad ian t  f lux 4 1  f o r  a narrow por t ion  Oh of t h e  
spectrum. If t h e  s p e c t r a l  brightness of t h e  entrance s l i t  of t h e  spectroscope 
i s  Bx then  t h e  rad ian t  f lux passing through t h e  device within t h e  s p e c t r a l  
range Ah obviously will be 

=BhsloPn AA, (17.Z) 

where s and 4, a r e  t h e  width and height of t h e  entrance s l i t ,  w i s  t h e  s o l i d  
angle a t  which t h e  e f f e c t i v e  aper ture  of t h e  d ispers ion  system i s  v i s i b l e  from 
t h e  center  of t h e  entrance slit, and Pi i s  t h e  transmittance of t h e  e n t i r e  op
t i c a l  system f o r  t h e  s p e c t r a l  range Ah. 

For t h e  system shown i n  Fig.17.Z eq.(l7.IX) can be rewr i t ten  i n  t h e  form 
of 

(18.Z) 


where d i s  the  diameter of an equidimensional c i r c l e  of t h e  e f f ec t ive  aper ture  
of t h e  d ispers ion  system. 

Equation (b8.M) app l i e s  t o  spectrometers where t h e  dimensions s ?  and 
of t h e  exit s l i t  are such as t o  allow f o r  t h e  increase  i n  s and by t h e  op
t i c a l  focusing system. 

The height of t h e  e n t r a n c e e l i t  image on t h e  spectrum w i l l  be 
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-- 

The width s t  of t h e  exit s l i t  must be taken wi th  allowance f o r  broadening 
due t o  ray sca t t e r ing ,  i.e., 

(20.M) 


where -	d& i s  t h e  l i n e a r  d i spers ion  of t h e  instrument. 
dh 

If t h e  s e n s i t i v e  sur face  area of t h e  r ece ive r  i s  small (smaller t han  s t  X 

x . e t ) ,  it may be necessary t o  i n s t a l l  a converging l e n s  beyond t h e  exit s l i t  of 
t h e  spectrometer. 

Equation (18.IX) shows t h a t  an increase  i n  t h e  aper ture  r a t i o  of spectro
meters may be accomplished by enlarging t h e  angular dimensions of t h e  entrance 

s l i t  -	.e and p a r t l y  a l s o  2 as well as of t h e  e f f e c t i v e  aper ture  d of t h e  
f i  f l  

d i spers ion  system. However, t h e  p o s s i b i l i t i e s  f o r  enlarging t h e  entrance-sli t  
width s and hence a l s o  t h e  s p e c t r a l  l i n e s  i n  Ah are l imi ted ,  s ince  this leads  
t o  a d e t e r i o r a t i o n  of t h e  o ther  c h a r a c t e r i s t i c s  of t h e  s p e c t r a l  instrument. 
This enlarging may be done only when measuring widely spaced s p e c t r a l  l i n e s .  

The aper ture  r a t i o  of spectrographs i s  usually characterized by mono- /230
chromatic i l lumina t ion  E l  i n  t h e  s p e c t r a l  plane, s ince  t h e  e f f e c t  of r a d i a t i o n  
on t h e  photographic material i s  determined by t h e  magnitude of El. With t h e  a i d  
of t h e  formulas derived previously, this can be w r i t t e n  as 

For f i n e  monochromatic l i n e s  (s  B A h ) ,  as can be seen from eq . (a . IX) ,  t h e  
aper ture  r a t i o  of t h e  spectrograph i s  independent of t h e  en t rance-s l i t  width s 
and i s  equal t o  

(22.M) 


Equations (2l.M) or (22.D) i n d i c a t e  t h a t  t h e  aper ture  r a t i o  of spectro
graphs i s  independent of t h e  s i z e  of t h e  entrance sl i t  of t h e  instrument and 
c h i e f l y  increases  as a func t ion  of t h e  relative aper ture  d/fz of t h e  camera. 

Spectra of extremely feeble sources (nightsky glow, etc.)  are taken w i t h  

t h e  a i d  of spectrographs having an  aper ture  r a t i o  up t o  	d = 1- 0.5. 
f 2  
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For r e f l e c t i n g  types of d i f f r a c t i o n  gratings,  t h e  s o l i d  angle between t h e  
entrance s l i t  and t h e  g ra t ing  i s  

where & i st h e  operating sur face  area of t h e  grating, rl i s  t h e  d is tance  be
tween entrance s l i t  and gra t ing .  

The r ad ian t  f l u x  across  t h e  exit s l i t  can be wr i t t en  as 

where y i s  g ra t ing  e f f i c i ency  f o r  a given angle of incidence $ and a d i f f r a c t i o n  
angle cp. 

Then, t h e  dimensions of t h e  exi t  s l i t  must be 

where r2 is  d is tance  between g ra t ing  and exit s l i t .  

Note t h a t  i n  t h e  d i r e c t i o n  at  r i g h t  angles t o  t h e  d i f f r a c t e d  beam t h e  
widths of t h e  entrance and exit slits w i l l  be t h e  same. T h i s  markedly d i f - /23l 
f e r e n t i a t e s  devices with concave g ra t ings  from systems with focusing opt ics .  

Hence, t h e  i l l m i n a t i o n  of t h e  photographic f i l m  of a concave-grating spec
trograph i n  t h e  c e n t r a l  po r t ion  of t h e  spectrum w i l l  be 

( 2 6 . n )  

2/Gwhere p i s  t h e  radius of curvature of t h e  g ra t ing  and -i s  a quantity repre-
P 

sent ing  t h e  relative aper ture  of t h e  gra t ing .  

The i l lumina t ion  Ex i s  a func t ion  of t h e  angles cp and J r ,  as expressed by 
t h e  e f f ic iency  y, so  t h a t  t h e  aper ture  r a t i o  of g ra t ing  spectrographs varies 
with t h e  length  of t h e  spectrum. 

The ef f ic iency  of echelon gra t ings  (Bibl.19) may exceed 60% i n  t h e  region 
of about 2000 1. T h i s  means t h a t  t h e  i n t e n s i t y  of t h e  emergent monochromatic 
f l u x  $1accounts f o r  more than  60% of t h e  i n t e n s i t y  of t h e  i n t e g r a l  inc ident  
f lux .  

In  t h e  X-ray region ( A  < 30 1) gold-coated g ra t ings  are t h e  most e f f e c t i v e  
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( B i b l . a ) ,  pa r t i cu la r ly  f o r  low angles of incidence. I n  t h e  W region ( A  > 
> 500 1) aluminum-coated gra t ings  exhibit high e f f ic iency  (up t o  y = 75%). 

F ig .16 .n  Mounting of Concave Gratings according t o  
t h e  Systems of: Rowland ( a ) ,  Paschen (b)  

and Wadsworth (c ) .  

The methods of i n s t a l l i n g  concave d i f f r a c t i o n  gra t ings  i n  t h e  instruments 
may d i f f e r .  We w i l l  descr ibe the  most o f t en  used methods of this kind. 

The Rowland method (Fig.l6a.M), which i s  most o f t en  used i n  these  devices 
(Bibl.6, 10, 17, 20) provides f o r  a l igning t h e  working surface of t h e  gra t ing  G, 
t h e  entrance s l i t  s, and t h e  spectrum rece iver  R over t h e  perimeter of a c i r c l e  
whose diameter equals t h e  radius  of curvature P of t h e  grat ing.  The elements G 
and R are so mounted on a r i g i d  base 0 t h a t  they can be displaced i n  two mutu
a l l y  perpendicular d i rec t ions ,  with t h e  entrance sl i t  s being located a t  t h e i r  
point  of in te rsec t ion .  By moving t h e  base 0 along guide rails, t h e  angle /232 
of incidence JI of t he  beam on t h e  gra t ing  can be a l t e r e d  and various port ions 
of t h e  spectrum can be focused on t h e  receiver.  

The Paschen system (Fig.16b.m) d i f f e r s  from t h e  Rowland system i n  t h a t  t h e  
surface of t h e  receiver  itself i s  curved along an a r c  of t h e  Rowland c i r c l e .  I n  
this case, t h e  concave gra t ing  G, t h e  s l i t  s, and t h e  sens i t i ve  surface R are 
along t h e  Rowland c i r c l e .  Such a methodensuresthe simultaneous measurement of 
first-, second- and third-order spectra,  C1 ,  CZ, and CS,  as well as obtainment 
of t h e  cen t r a l  image CO. 

Mounting t h e  gra t ing  so t h a t  t h e  beams will be p a r a l l e l  (Wadsworth system, 
Fig.16c.a)  i s  accomplished with t h e  a i d  of a spher ica l  concave mirror M at  
whose focus t h e  entrance sl i t  s i s  located. In  this system, t h e  spectrum i s  
formed at t h e  cy l ind r i ca l  surface R. 

To obtain smaller dimensions of t h e  spec t r a l  device and enhance i t s  o p t i c a l  
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q u a l i t i e s  i n  t h e  vacuum W region, use i s  made of a normal-incidence s y s t e m  with 
a small angle of incidence of t h e  beams on t h e  gra t ing  ( $  < 10'). In this case, 
t he  gra t ing  i s  mounted i n  a s lanted posi t ion,  such t h a t  t h e  spectrum i s  ob
tained beneath t h e  entrance slit.  The normal-incidence system has the  advantage 
of minimizing astigmatism and ensuring a v i r t u a l l y  constant dispers ion with re
spect t o  t h e  spectrum (Bibl.6, 17). 

Fig.17.B Mounting of Concave Gratings i n  Oblique-
Incidence ( a )  and Normal-Incidence (b) Systems. 

With respect t o  t h e  X-ray (A < 100 8) and far-UV ( A  < 500 1) regions of 
t h e  spectrum, t h e  r e f l e c t i o n  f a c t o r  (e f f ic iency)  of t h e  gra t ing  and t h e  disper
s ion  can be increased by a Rowland-circle alignment based on an ob l ique inc i 
dence (Q+IO') system (Fig.17a.M). However, t h e  dispers ion then va r i e s  con
siderably with t h e  length  of t h e  spectrum and t h e  astigmatism i s  subs t an t i a l  
(Bibl.6, 17) .  Short-wave boundaries of spec t ra  obtained with one and t h e  same 
grat ing at  angles of incidence of 0' and 85' were approximately 320 and 53 8, 
respect ively (Bibl.6). I n  t h e  normal-incidence system, a.n addi t iona l  pre
dispers ion gra t ing  (F'ig.17b.I.X) i s  of ten  employed along with t h e  main g ra t ing  i n  
order t o  reduce t h e  scat tered-l ight  background and increase t h e  dispersion. 

Spectrographs f i n d  wide appl ica t ion  i n  t h e  United States ,  where extra- /233
atmospheric s tud ies  of short-wave rad ia t ion  have been conducted s ince 194.6 with 
t h e  a5-d of V-2, Aerobee, Viking, and o ther  rockets  (&?31.20). Most of t h e  
spectrographs used are compact d i f f r ac t ion  spectrographs with r e f l ec t ion  grat
ings  mounted i n  a normal- or obl ique inc idence  system depending on t h e  spec t r a l  
region measured. 

During t h e  i n i t i a l  rocket-borne s tudies  of this kind, performed over 
l imi ted  per iods of time, i t  was expedient t o  use d i f f r a c t i o n  devices with a suf
f i c i e n t  aper ture  r a t i o  and l imi ted  reso lu t ion  ( R  = lo") as w e l l  as with dis
persion ( D  - 10 Umm) i n  t h e  f i r s t -order  spectrum. I n  la ter  devices, these 
cha rac t e r i s t i c s  were improved by one order and more (Bibl.10). 

With t h e  object  of prolonging t h e  observation per iod and obtaining suf
f i c i e n t l y  long exposures, t h e  o r ig ina l  rocket-borne spectrographs incorporated 
wide-angle op t i ca l  s l i t - i l lumina t ing  systems. The p r inc ipa l  shortcoming of t h e  
wide variety of these systems (Bibl.10, 20) was t h e  randomness of t h e  se l ec t ion  
of i n s t a n t s  su i t ab le  f o r  t r i gge r ing  t h e  instrument, as well as t h e  displacement 
of t h e  s l i t  with respect t o  t h e  spectrum during exposure, owing t o  t h e  change 
i n  the  pos i t i on  of t h e  sun relative t o  t h e  rocket.  T h i s  caused b lur r ing  of t h e  
spectra.  I n  v i e w  of t h e  inconvenience of wide-angle systems f o r  s l i t  i l l d n a  
t ion ,  at  present only instruments with a Small angle of v i e w  as well as with a 
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system of automatic sun tracking are employed. T h i s  ensured t h e  necessary ex
posure time [up t o  t ens  of seconds and longer (Bibl.10, 17)]. 

The sens i t i ve  materials used were sens i t ized  fine-grain pos i t i ve  f i lms  and 
- i n  t he  vacuum region of t h e  spectrum - gelatin-free f i l m s  and p l a t e s  (of t h e  
Schuman type).  

For absolute i n t e n s i t y  measurements of spec t r a l  emission, t h e  f i lm  must be 
ca l ibra ted  with respect t o  a standard source. I n  v i e w  of t h e  d i f f i c u l t i e s  of 
such ca l ib ra t ion  [ the  e r r o r s  i n  wavelength regions shor te r  than 2000 91 reach 
100% (Bibl.17) 1, supplementary measurements are occasionally made of t h e  in
t e n s i t y  i n  t h e  spec t r a l  region emitted by t h e  sun or i n  t h e  spec t r a l  l i n e  La, 
which were used as a c r i t e r i o n  f o r  estimating t h e  i n t e n s i t y  of t h e  o ther  spec
t r a l  regions o r  l i n e s  (Bibl.10). 

To reduce sca t te red  li h t  i n  t h e  instruments, t h e  entrance slits are made 
su f f i c i en t ly  narrow ( t o  6 p7 and t h e  gra t ings  sometimes are deposited on materi
als whose r e f l ec t ing  proper t ies  decrease i n  the  spec t r a l  region with longer wave
lengths,  where t h e  i n t e n s i t y  of t h e  sunlight i s  considerable [quartz c rys t a l ,  
cer ta in  resins ,  red glass ,  e t c .  (Bibl.1O)l. For t h e  same reason, t h e  i n t e r n a l  
components of t h e  spectrograph are coated with an absorbent dye. 

The improvements i n  t h e  proper t ies  of d i f f r a c t i o n  gra t ings  i n  ce r t a in  Ameri
can spectrographs (Bibl.10) are due t o  t h e  use of a t o r o i d a l  s l i t - i l lumina t ing  
mirror  whose astigmatism o f f s e t s  t h e  astigmatism of t h e  grat ing.  /234 

m e  use of pre-di e rs ion  systems with echelon gra t ings  enabled Purce l l  
and Tousey LBibl.10, 2 3  t o  ob ta in  a dispers ion of - 0.5 K/mm and a reso lu t ion  
of about 10 and t o  inves t iga te  the  contour of t h e  La l i n e  ( c f .  F'ig.2.IX). A 
spectrograph widely u t i l i z e d  by Tousey et al. (Bibl.10, 17) incorporated a con
cave d i f f r ac t ion  gra t ing  with a radius  of curvature P = 4.0 cm and with 600 l i n e s  
p e r  m, t o  obtain spec t ra  in t h e  region from 500 t o  2500 hl at a reso lu t ion  of 
18. The gra t ing  was mounted i n  a normal-incidence system ( $  = 2.3'), and t h e  
f i r s t -order  spectrum was recorded on film. The spectrograph casing was mounted 
on a twin-axis t racking dr ive  which kept t h e  slit or iented toward t h e  sun. To 
eliminate t h e  e f f e c t  of t h e  rocket tumbling, t h e  e n t i r e  nose cone, including t h e  
spectrographs, was able  t o  r o t a t e  about i t s  axis. A t rack ing  system ensured 
or ien ta t ion  toward t h e  sun, with an accuracy t o  +5 seconds of arc .  

The oblique-incidence ( $  = 85') s s t e m  used i n  various rocket-borne experi
ments by Violet and Rense (Bibl.10, 17y, has made it poss ib le  t o  record spec t ra  
t o  h = 84. hl.  T h i s  spectrograph i s  equipped with gra t ings  of various s i z e  with 
600 l i n e s  t o  t h e  millimeter, a radius  P = 50 cm, and dispers ion of from 
12.6 li/" f o r  A = 1200 hl t o  6.6 Il/rmn f o r  h = 300 1. The resolving power of this 
instrument was 0.4. hl i n  t h e  region of La. 1 

The automatic d i f f r a c t i o n  spectrograph with a concave grating, designed t o  
obtain t h e  solar spectra i n  t h e  1000 - 3000 1 range on board eophysical 
rockets, which was developed by A.V.Yakovleva e t  61. (Bib1.23 7 has found wide 
appl icat ion.  The o p t i c a l  system of this spectrograph (Fig.18.M) contains a 
mirror  (1)of t h e  sun-tracldng s y s t e m ,  an entrance s l i t  (2)  of f ixed  s i z e  2 x 
X 0.02 m, and a concave d i f f r a c t i o n  gra t ing  ( 3 )  mounted i n  a normal-incidence 



system on t h e  Rowland c i r c l e .  The d i f f r a c t i o n  g ra t ing  of t h i s  instrument has 
600 ru l ings  t o  t h e  millimeter and ensures a l i n e a r  d i spers ion  of 16.7 sl/”.
Photographic f i lm ( 4 )  is  placed below t h e  entrance s l i t  of t h e  instrument, w i t h  
t he  gra t ing  inc l ined  i n  t h e  v e r t i c a l  plane. Mounted i n  t h e  lower p a r t  of t h e  
o p t i c a l  system are two mirrors (5 )  and (7) ,  a l e n s  (6)  and i l lumina t ing  lamps
(9)  designed t o  obta in  a n  image of t h e  f ace  of t h e  clock d i a l  (8) at  t h e  begin
ning and end of exposure of t h e  spectrum on t h e  same film. 

The o p t i c a l  system of this spectrograph i s  assembled i n s i d e  a tube designed 
f o r  attachment i n  l i e u  of t h e  rocket nose cone. The upper p a r t  of t h e  spectro
graph ( t h e  head) can revolve through 360’ about t he  rocket a x i s  t o  ensure steady 
o r i en ta t ion  toward t h e  sun. The sun-tracking system i s  controlled by photo-
r e s i s t o r s  i n s t a l l e d  i n  t h e  windows of t h e  head. Mounted outside an opening i n  
t h e  casing i s  t h e  mi r ro r  (1)of t h e  sun-tracking system, which can de f l ec t  /235
20’ toward e i t h e r  s ide  from i t s  cen t r a l  pos i t i on .  T h i s  ensures operation of t h e  
sun-tracking system i n  two planes: azimuthal and v e r t i c a l .  

The automatic device of t h e  spectrograph operates so t h a t  t he  window of t h e  
instrument head opens one minute a f t e r  launching of t h e  rocket and a f t e r  t r i g 
gering t h e  sun-tracking system. After t h e  instrument i s  oriented toward t h e  
sun, automatic mul t ip le  photographing of t h e  spectrum a t  a f ixed  ( p r i o r  t o  
launching) exposure t i m e  i s  s t a r t e d .  After t h e  photographing i s  completed, t h e  
window of t h e  t racking  head c loses  and t h e  f i l m  i s  rewound i n t o  the  magazine. 
Time marks are p r in t ed  on t h e  f i l m  a t  the  beginning and end of every photo
graphing cycle. 

i v  


Fig.18.D Optical  System of Rocket-Borne 
Spectrograph 

Various sun-tracking systems f o r  or ien t ing  t h e  instrument toward t h e  sun 
e i t h e r  d i r e c t l y  or by s h i f t i n g  t h e  in t ake  mirror have been developed. 

The operation of these  systems which, as a ru le ,  have two s tages  of guiding 
(rough and p rec i se )  i s  based on t h e  use of FSK-type photores i s tors  whose m a x i 
mum s p e c t r a l  s e n s i t i v i t y  i s  c lose  t o  h = 5000 1 and which have a high dark re
s i s tance .  The sensor of t h e  tracking system includes two photores i s tors  mounted 



a t  a mutual angle such t h a t  one ha l f  of t he  working surface of each i s  shaded 
by a forward-projecting disk when it i s  or iented toward t h e  sun. When t h e  sun 
deviates  from the  sensor a x i s  a mismatch s igna l  produced by motors i s  generated 
i n  the  bridge c i r c u i t  t o  which the  photores i s tors  are connected. One of t h e  2 6 
mirror-type sun-tracking systems, e.g., based on FSK-0 photores i s tors  (Bibl.5 fl 
provides f o r  o r i en ta t ion  of t h e  d i sk  center  with respect  t o  the  sun, with an 
accuracy t o  within a t  least  f i v e  minutes of a rc .  

Soviet-built  rocket-borne spectrographs of var ious design (f luor i te - type  
with a 360’ i l luminat ing lamp and a sun-tracking system) have been used i n  
rocket s tud ie s  of atmospheric ozone (Bib1.23). 

For spec t r a l  analysis ,  cha rac t e r i s t i c  f i l m  curves were  recorded i n  advance. 
These curves were p lo t t ed  every 50 1 i n  t he  spec t r a l  region from 2500 t o  3100 1 
by means of hydrogen-lamp blackening marks. The cha rac t e r i s t i c  operating curve 
f o r  this spectrum region was obtained by averaging a l l  curves p lo t t ed .  The 
spectra  photographed a t  various a l t i t u d e s  were analyzed with an MF-4. type re
cording microphotometer, and t h e  blackening marks were recalculated i n  terms of 
r e l a t i v e  i n t e n s i t i e s  by means of t h e  averaged c h a r a c t e r i s t i c  curve. 

So f a r ,  spectrometers have been used much less frequent ly  f o r  s tud ie s  of 
t he  short-wave spectrum regior! than spectrographs. A s  pointed out previously,  
this can be a t t r i b u t e d  t o  the  lower r e l i a b i l i t y  of telespectrometers and t h e  
lack of proper receivers ,  p a r t i c u l a r l y  i n  t h e  UV region of 1000 < h < 3500 1. 

The most su i t ab le  rece ivers  f o r  UV spectrometers a r e  secondary-electron 
mul t ip l i e r s  (SEN) of the  open type, whose p rope r t i e s  were  described previously 
( c f .  Sect. 5 of this Chapter). The s p e c t r a l  range of SEN-containing instruments 
i s  l imited by t h e i r  s e n s i t i v i t y  range; f o r  Be0 this i s  approximately 1t o  
1000 1 ( c f .  Fig.13.U). United S t a t e s  te lespectrometers  incorporate  SEN-type 
de tec tors  with tungsten dynodes whose s e n s i t i v i t y  reaches t o  t h e  vacuum W re
gion, up t o  1800 1 ( B i b 1 . a ) .  

The ex is t ing  (Bibl.3, 2!+.)devices can measure spec t ra  i n  t h e  far-W region 
and use concave d i f f r a c t i o n  gra t ings  mounted i n  an oblique-coincidence system. 
Scanning of t he  spectrum i s  accomplished by mechanical systems. 

The parameters and operating f ea tu res  of spectrometers w i l l  be described on 
t h e  example of t h e  photoe lec t r ic  d i f f r a c t i o n  device i n s t a l l e d  i n  t h e  third 
s a t e l l i t e  (Bibl.3).  T h i s  spectrometer was developed t o  ensure r e l i a b l e  per
formance of t h e  measuring c i r c u i t  i n  t h e  presence of extremely weak and ex
tremely s t rong radiant  fluxes of as high as 10 ergecm-” 0sec-l . 

The var ian t  of t h e  device (Bibl.4) described here was designed f o r  measure
ments i n  the  region of t h e  resonance l i n e  of ionized helium He I1 with A = 304 s,
emitted by t h e  sun. It can be adjusted t o  s tud ie s  of o ther  l i n e s ,  i n  pa r t i cu la r ,  
of Lcr or H e  I1 with h = 584 8. 

The device cons i s t s  of fou r  main components: 1)spectrometer with a sun-
t racking system; 2) e l e c t r i c  system unit (ESU); 3) e lec t ron ic  /237
measuring and recording ; and 4 )  power pack which cons i s t s  of a 
ba t t e ry  of chemical c e l l s .  



The o p t i c a l  system of t h e  device (Fig.19.IX) contains an entrance s l i t  S 
(dimensions, 0.2 x 7 mm), a d i f f rac t ion-gra t ing  r e p l i c a  G [with 1200 ru l ings  t o  
t h e  millimeter, radius of curvature 500 m, dispers ion  (16 a/”)], miniature 
quartz prism Pr, a t r a p  T r y  an  o u t l e t  diaphragm 0, an  exit s l i t  ST (dimensions 
0.1 x 0.15 mm), and a SEN de tec to r  with Be0 dynodes. 

Fig.19.M Optico-Kinematic Diagram of t h e  Telespectrometer. 

The prism Pr and t h e  scanning s l i t  S f  are mounted on the  ends of a rocking 
arm RA swinging about t h e  po in t  01, The swinging of t h e  rocking arm i s  ac
complished by a pulsed cadence motor which t u r n s  t h e  cam C w i t h  a double cardi
oid on which rests t h e  lug L of t h e  rocking arm. The rocking arm swings back 
and f o r t h  between the  pos i t i ons  RA and RAT; w h i l e  it i s  i n  the  pos i t i on  RA, t h e  
prism en te r s  t h e  focus of t h e  zeroth-order spectrum and d i r e c t s  i t  toward t h e  
receiver.  T h i s  unresolved po r t ion  of t h e  spectrum (from 2000 t o  1700 1) i s  
emitted with extreme s t a b i l i t y  by t h e  sun and serves t o  v e r i f y  t h e  s e n s i t i v i t y  
of t h e  measuring c’ircuit a t  the  end of each s p e c t r a l  scanning cycle. A s  t h e  
s l i t  shifts from i t s  extreme left-hand pos i t i on ,  t h e  zeroth-order spectrum i s  
absorbed by t h e  t r a p  T r .  When i n  t h e  p o s i t i o n  F L A T ,  t h e  rocking arm closes the  
contact energizing t h e  operation of t h e  scanning system (of f -nul l ) .  

The t o t a l  duration of t h e  spec t r a l  scanning cycle, which i s  30 1wide i n  
both d i r ec t ions  from t h e  center  of t h e  l i n e  being recorded, i s  170 see. The 
displacement rate of t he  s l i t  i s  0.05 m-/sec and i t s  o p t i c a l  width i s  1.5 8. 

The device i s  t r iggered  by a relay on command, during t h e  20th minute a f t e r  
t he  probe i s  in j ec t ed  i n t o  o r b i t .  
dynode discharges t h a t  might occur i n  t h e  presence of i n s u f f i c i e n t  vacuum. 
After this, t h e  sun-tracking system and t h e  scanning device cont ro l l ing  t h e  
clock-pulse generator CFG begin t o  operate (Fig.20.M). The SEN i s  supplied 
with a voltage of 5.5 kv f r o m t h e  converter Co. SEN pulses ,  whose r e p e t i t i o n  

T h i s  i s  done t o  p r o t e c t  t h e  SEM from i n t e r 
/238 

rate i s  propor t iona l  t o  t h e  i l lumina t ion  of t h e  receiver,  a r e  amplified by a 
preamplifier PA and a r e  f ed  from here, across  a coaxia l  cable, t o  t h e  E;sU u n i t  
where they a r e  addi t iona l ly  amplified. The amplified SEN pulses  t r i g g e r  t h e  
fl ip-flop T which has t h e  r o l e  of a rapid-acting standardizing device; after 
ampl i f ica t ion  by amplifier A, t h e  pulses  travel simultaneously t o  t h e  output 
counting rate meters em1, CRMa, and CRM3. The counting rate meter CRMl has a 
logarithmic sca l e  and operates i n  t h e  frequency range from 1 t o  l o 5  cps, w h i l e  
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t h e  CRM2 and CRMB operate successively i n  two subranges connected by t h e  ana
l y z e r  (3) over t h e  switches (1)and (2) .  

PA A T 

7 0  telraetry 

CRM, 


1 
2 CRMj 

Fig.20.D Block Diagram of Telespectrometer. 

Processing of t h e  da t a  involves a determination of t h e  counting rate and 

A1
r e l a t i v e  i n t e n s i t y  i n  a given spectrum region J = -
A0 

,where A I  i s  t h e  record

i n g  amplitude, and A. i s  t h e  amplitude of t h e  zeroth-order spectrum. 

The absolute i n t e n s i t y  of t h e  inves t iga ted  s p e c t r a l  l i n e  may be ca lcu la ted  
w i t h  an e r r o r  of t h e  order of +loo%, according t o  t h e  known parameters of t h e  
spectrometer and t h e  r ad ia t ion  rece iver  (Bibl.4). 

CHAPTER X 

MEASURFMENTS OF RADIANT ENERGY I N  THE VISIBLE AND INFRAR.F,D 
SPECTRUM REGION 

Section 1. Basic Problems of Measurement and Instrumentation 

The vis ible  region of t h e  spectrum encompasses a comparatively narrow /239 
wavelength range from 0.38 t o  0.76 p, whereas t h e  i n f r a r e d  region extends from 
0.76 t o  350 p. Hence, t h e  l a t te r  i s  addi t iona l ly  divided i n t o  t h e  near-infrared 
(trp t o  2.5 p or more than  4.000 an-’), t h e  middle (from 2.5 t o  50 c1 or fro? 4.000 
t o  2000 cm-l ), and t h e  fa r - inf ra red  (more than 50 CL or less than 2000 cm- ) . 

The sun i s  t h e  most important source of t h e  rad ian t  energy received by t h e  
earth i n  the  v i s i b l e  and near-infrared region. The i n t e g r a l  flux of s o l a r  radia
t i o n  inc ident  on an  area of one square centimeter a t  r i g h t  angles t o  i t s  rays 
outside t h e  atmosphere, f o r  t h e  mean d is tance  between e a r t h  and sungknown as 
t h e  s o l a r  constant, i s  FO = 1.97 f 0.01 cal/cm2 min (or 0.137w/cm ) (Bibl.2). 

The spectrum of t h e  v i s i b l e  and i n f r a r e d  r ad ia t ion  of t h e  sun has a con
tinuous character.  It i s  due t o  recombinations of various atoms i n  t h e  photo
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sphere. The maximum s o l a r  energy i s  emitted i n  t h e  v i s i b l e  spectrum region 
(about 0.5 p) .  The temperature of an absolu te ly  black emitter ( t h e  e f f e c t i v e  
temperature of t h e  sun) which has a similar spectrum and emits an i n t e g r a l  f l m  

1/4 

(7 = 5 7 8 5 O K ,  where (5 = 5.672 X 10-l”wof t h e  same dens i ty  FO i s  T, = ‘ Fo ) 
cm-2 deg-4 i s  t h e  emission constant. 

The mean luminance or r ad ian t  i n t e n s i t y  of t h e  s o l a r  d i sk  i s  J = 2.02 x 
x lo3  w cm-” ster-l and t h e  mean luminosity of i t s  surface outside t h e  
bounds of t h e  atmosphere i s  B = 2 X l o 5  s t i l b .  The i l l m i n a t i o n  E amounts t o  
13.6 phots f o r  t h e  mean d is tance  between e a r t h  and sun (Bibl.2). 

The s p e c t r a l  course of t h e  radiant-energy i n t e n s i t y  of t h e  sun, Jl i n  
cal/cm”*min-ster*p at t h e  top of t h e  atmo here, according t o  M.S.Malkevich 
(Bibl.4) i s  presented i n  Fig.1a.X (Curve 17. The solar energy (Bibl.2) i s  
b a s i c a l l y  (-99.9%) enclosed wi th in  t h e  s p e c t r a l  i n t e r v a l  from 0.2 t o  4 p.  

The passage of rad ian t  energy through t h e  atmosphere i s  accompanied by i t s  
s e l e c t i v e  absorption by gas molecules and s c a t t e r i n g  by molecules and p a r t i c l e s  
of aerosols.  A s  a result, t h e  rad ian t  energy of t h e  sun i s  attenuated before i 
a r r i v e s  a t  t h e  e a r t h t s  surface (Curve 2 i n  Fig.1a.X) and i t s  spectrum contains 
gaps due ch ie f ly  t o  absorption by water vapor. The main i n t e n s i t y  of t h e  radi
an t  energy of t h e  sun, r e f l ec t ed  back from t h e  e a r t h  i n  t h e  vis ible  and near-
in f r a red  regions, i s  i l l u s t r a t e d  by Curve 3 i n  b’ig.1a.X. 

Note t h a t  more d i s t a n t  bands - compared with those shown i n  Fig.1a.X - & 
of absorption by atmospheric gases, according t o  K.Ya.Kondrattyev and K.Ye. 
Yakushevskaya (Bibl.&), are loca ted  i n  t h e  neighborhood of 1.87 1.1 ( H 2 0 ) ,  2.7 p 
(H20) ,  6.3 p ( H a  from 4.88 t o  8.70 b),  9.6 CL (03 from 9.01 t o  10.29), 15  c1 (co2
from 12  t o  18 p),  30 p (Hafrom 18 t o  40 p), and 80 p (H20 from 4.0 t o  120 p).  
The sec to r s  with t h e  highest  t ransmiss iv i ty  are: 3.6 t o  b.1 p, 8.70 t o  9.01 p 
and 10.29 t o  12.00 p. The l a t t e r  two usua l ly  combine i n t o  a s ing le  “transpar
ency window” i n  t h e  atmosphere wi th in  t h e  range from 8 t o  12  p .  

It i s  this 8 - 1 2  p s p e c t r a l  range t h a t  exac t ly  accounts f o r  t h e  maximum ir 
the  emission spectrum of bodies with temperatures of 200 - 300°K, i.e., i n  t h e  
na tu ra l  r a d i a t i v e  f l u x  of t h e  earth-atmosphere system. 

The s p e c t r a l  dens i ty  of t h e  na tu ra l  r a d i a t i v e  flux of bodizs a t  t h e  above 
temperatures, according t o  Planck’s law,  i s  of t h e  order of 10- t o  w/cm”p 
i n  t h e  neighborhood of t h e  maximum, w h i l e  about 99.9% of t h e  energy of this 
rad ia t ion  l i e s  within t h e  s p e c t r a l  region of roughly from 4 t o  40 p.  

I n  meteorology, rad ian t  energy of wavelengths sho r t e r  than 3 - 4 p i s  some 
times termed short-wave as d i s t i n c t  from t h e  long-wave or thermal na tu ra l  radia
t i o n  of t h e  ear th ,  clouds, and t h e  atmosphere loca ted  beyond this s p e c t r a l  
boundary. 

Solar  r a d i a t i o n  r e f l ec t ed  f r o m t h e  sur faces  of t h e  p l ane t s  and sca t t e red  i n  
t h e i r  atmospheres i n  a n  outward d i r e c t i o n  from t h e  p l a n e t t s  surface, escapes in
t o  outer  space along with t h e  na tu ra l  emission of t h e  planet-atmosphere system 
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f ,  b)
0.4 r 

Fig.1.X Spectral  Course of t h e  In t ens i ty  of t h e  Radiant 
Solar  Energy ( a )  and Spec t ra l  Density of t h e  Flux 

of Outgoing Radiation from t h e  Planets  (b ) .  

(outgoins rad ia t ion) .  A t  wavelengths exceeding 5 - 6 P, t he  spec t r a l  densi ty  Fx 
( i n  w/cm F) (Fig.1b.X) of t h e  na tu ra l  rad ia t ion  f l u x  of t h e  ea r th  and o ther  
p l ane t s  (broken curves) already begins t o  exceed t h e  mean spec t r a l  densi ty  of 
t h e  s o l a r  r ad ia t ion  f l u x  r e f l ec t ed  from them ( so l id  curves). I n  p l o t t i n g  these  
curves, t h e  authors (Bibl.9) assumed t h a t  r e f l e c t i o n  from the  p l ane t s  i s  d i f fuse  
and t h a t  solar r ad ia t ion  corresponds t o  a black body with a temperature of 
5783% and t h a t  t h e  rad ia t ion  constant of t h e  p lane ts  i s  8 = 1. The mean plane
t a r y  albedo was taken as 0.7 f o r  Venus, 0.15 f o r  Mars, and 0.4 for Earth. I n  
r e a l i t y ,  it appears t h a t  t h e  na tu ra l  r ad ia t ion  of t h e  p l ane t s  begins t o  pre-
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dominate (on t h e  i l luminated s ide )  even at  s h o r t e r  wavelengths, s ince  t h e  calcu
l a t i o n s  d i d  not allow f o r  t h e  absorption of solar energy by atmospheric gases. 

A most important purpose of measuring electromagnetic r ad ia t ion  i n  t h e  
v i s i b l e  spectrum region, performed by space probes and rockets,  i s  a determina
t i o n  of t h e  o p t i c a l  c h a r a c t e r i s t i c s  of t h e  atmosphere and surfaces of t h e  
p lane ts .  An a d d i t i o n a l  t a s k  a t  present  i s  t h a t  of observing t h e  sur faces  of t h e  
moon and p l ane t s  with t h e  a i d  of space probes. O f  not less inlportance i s  a de
termination of t h e  analogous c h a r a c t e r i s t i c s  which determine t h e  conditions & 
f o r  using instruments operating i n  t h e  IR p o r t i o n  of t h e  spectrum, considering 
t h a t  I R  rays  undergo smaller a t tenuat ion  w h i l e  propagating through t h e  regions 
of atmospheric transparency. 

Measurements of t h e  s p e c t r a l  charac te r  and absolu te  quan t i t i e s  of t h e  radia
t i v e  fluxes r e f l ec t ed  from and emitted by t h e  e a r t h  and p l ane t s  make it poss ib le  
t o  obtain various important geographical and meteorological da ta  on t h e  p l ane t s  
and t h e i r  atmospheres. Spec t ra l  analyses of short-wave (A < 4 p )  r ad ia t ion  re
f l e c t e d  from a p lane t  make i t  poss ib l e  t o  determine t h e  na ture  of t h e  r e f l e c t i n g  
and sca t t e r ing  l aye r s  ( s o l i d  surface,  water, or clouds), as w e l l  as t h e  impurity 
content of t h e  atmosphere. I n  t h e  l a t te r  case, measurements must be made a t  
various a l t i t u d e s  i n  the  atmosphere or t h e  r a t i o s  of t h e  f luxes  of s ca t t e r ed  
rad ian t  energy i n  various s p e c t r a l  i n t e r v a l s  must be determined. K.S.Shifrin e t  
al .  (Bibl.4) developed a simple method f o r  ca l cu la t ing  t h e  f luxes  of short-wave 
r ad ia t ion  by using a device with a narrow f i e l d  of v iew,  i n s t a l l e d  on an arti
f i c i a l  e a r t h  satell i te,  provided t h a t  i t s  o r i e n t a t i o n  i s  known. 

Measurements of outgoing long-wave r ad ia t ion  ( A  > 4 14) i n  t h e  bands of 
strong absorption (and emission) of water vapor and carbon dioxide (present  i n  
t h e  atmosphere of every p l ane t  i n  t h e  terrestrial group) are a means of determin
i n g  t h e  temperature a t  various a l t i t u d e s  i n  t h e  atmosphere. Thus, t h e  e a r t h t s  
emission i n  t h e  Ha0 band, with a center  a t  about 6.3 w ,  or ig ina te s  i n  t h e  upper
most boundary of t h e  d i s t r i b u t i o n  of water vapor i n  t h e  atmosphere, i.e., a t  a 
level close t o  t h e  tropopause. Hence, t h e  r ad ia t ion  f l u x  i n  this band i s  quanti
ta t ivel  l imi ted  and i s  determined by t h e  temperature near t h e  tropopause
(- 2 2 0 4 ) .  0n t h e  other.hand, measurements of  r ad ian t  energy i n  t h e  atmospheric 
transparency windows where r ad ia t ion  almost f r e e l y  escapes i n t o  outer  space, 
make it poss ib le  t o  determine t h e  temperature of t h e  e a r t h t s  surface a t  t h e  
measuring s i t e  or t h e  temperature of t h e  upper boundary of t h e  cloud blanketing 
this surface. 

An ana lys i s  of p o s s i b i l i t i e s  f o r  measuring t h e  r ad ia t ion  temperature from a 
meteorological sa te l l i te ,  performed by V.L.Gayevskiy and Yu.I.Rabinovich (Bibl.4) 
shows t h a t  t h e  e f f e c t  of t h e  a t tenuat ion  of r ad ian t  energy by aerosols  i n  t h e  
8 - 12 p transparency window i s  smaller by one order  of magnitude than t h e  ef
f e c t  of t h e  absorption and emission of water vapor i n  this spectrum region. To 
enhance t h e  accuracy of measurements, a cor rec t ion  f o r  t h e  moisture content and 
s t r a t i f i c a t i o n  of t h e  atmosphere has been proposed. The extent of this correc
t ion ,  according t o  Gayevskiy and Rabinovich (Bibl.k), may reach 1 0 ° C  and more. 
If this cor rec t ion  i s  taken i n t o  account, t h e  measurements can be cor rec t  t o  
within as l i t t l e  as 4 - roc, but  this requires concomitant measurement of t h e  
moisture content of t h e  atmosphere. The cor rec t ion  for absorption by ozone ( i n  
t h e  9.6 p band) does not exceed 5' (Bibl.4) and can be dispensed with by using 
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apparatus operating i n  a more narrow s p e c t r a l  range (e.g., 10- 12 P). 

Certain inves t iga to r s ,  i n  p a r t i c u l a r  V.L.Gayevskiy e t  a l .  (Bibl.4) have / a 3  
shown t h a t  on t h e  b a s i s  of t h e  satell i te measurements of r a d i a t i o n  temperature 
or r a d i a t i v e  f l u x  and t h e  v e r t i c a l  temperature gradient,  or on t h e  b a s i s  of 
measurements i n  t h e  absorption band of oxygen ( in  t h e  neighborhood of 0.762 P), 
whose d i s t r i b u t i o n  i n  the  atmosphere i s  known, it i s  a l s o  poss ib l e  t o  determine 
t h e  a l t i t u d e  of t h e  upper cloud boundary cor rec t  t o  wi th in  as l i t t l e  as 
0.5 - 1 lan. 

According t o  L.R.Rakipova (Bibl.4), t h e  required accuracy of measurements of 
r a d i a t i v e  f luxes  i n  t h e  I R  region by an  a r t i f i c i a l  e a r t h  satell i te should be a t  
least 4 - 5% before these  measurements can be u t i l i z e d  t o  ca l cu la t e  t h e  f i e l d s  
of meteorological elements. 

The apparatus used f o r  t h e  so lu t ion  of these  problems must perform absolu te  
measurements of r a d i a t i v e  f luxes  from a s u f f i c i e n t l y  small area and must be of 
t h e  scanning type, i.e. it must successively survey various por t ions  of t h e  
p l ane t ' s  surface during t h e  f l i g h t  of t h e  rocket or space probe. The instantane
ous viewing angle depends on t h e  required degree of d e t a i l  of t h e  p i c t u r e  and on 
t h e  sens i t iveness  of t h e  instrument. 

The f l u x  dens i ty  of t h e  r ad ia t ion  of a black sur face  i n t o  a half-sphere 
w i t h  a temperature of2200 K i n  t h e  s p e c t r a l  i n t e r v a l  of 10 - 12 p i s  approx
imately 4 x loe4 w/cm , as can be seen from Fig.1b.X. The measurable fluxes are 
subs t an t i a l ly  a t tenuated  by t h e  atmosphere and t h e  instrument's op t ics ,  and more
over they are l imi ted  by t h e  viewing angle of t h e  receptor.  

Measurements of outgoing r ad ia t ion  i n  various absorption bands are a means 
of t h e  thermal sounding of t h e  atmosphere, because t h e  predominant p a r t  of t h e  
r ad ia t ion  f l u x  forms a t  various atmospheric leve ls ,  depending on t h e  amount of 
t he  rad ia t ing  gas i n  t h e  atmosphere and on t h e  band i n t e n s i t y  (Bibl.4, 20). 
Thermal sounding may a l s o  be accomplished through s p e c t r a l  measurements of out
going r ad ia t ion  i n  a strong band of a gas whose a l t i t u d e  d i s t r i b u t i o n  i s  known 
[Kaplan's method (Bibl.lO)]. The nature of t h e  transmission spectrum of an at
mosphere can c l e a r l y  serve as a c r i t e r i o n  f o r  quant i ta t ive  s p e c t r a l  ana lys i s  of 
i t s  content of various absorbing components ( t o t a l  moisture content, carbon di
oxide content, ozone content, e t c . ) .  T h i s  t a s k  may be accomplished not only by 
means of s p e c t r a l  apparatus but  a l s o  by means of f i l t e r  apparatus which can iso
la te  t h e  near regions of transmission and absorption f o r  t h e  inves t iga ted  COD+ 
ponent. In this case, relative measurements of f l u e s  i n  se lec ted  s p e c t r a l  in
tervals may s u f f i c e  t o  solve t h e  problem. 

Note t h a t  this last circumstance i s  highly s ign i f i can t ,  s ince  absolute 
measurements of r a d i a t i o n  f luxes  require a reference source wi th  a corresponding 
emission spectrum which i s  compared with t h e  results of t h e  measurements, and 
t h e  con t ro l  of t h e  sens i t iveness  or zero l e v e l  of t h e  apparatus requires i t s  
per iodic  c a l i b r a t i o n  with respect t o  an  independent reference source. 

In t eg ra l  measurements of t h e  i n f l u x  (or loss) of energy t o  and by a p l ane t  
or i t s  indiv idua l  regions make it poss ib l e  t o  determine t h e  r ad ia t ion  b a l a n c e / w  
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where G S  and S ' t  are t h e  f luxes  of shortwave and longwave rad ian t  energy, re
spectively,  inc ident  on a horizontal  sur face  loca ted  at t h e  measurement po in t  
from the  upper or lower half-sphere of space, and A i s  t h e  meam albedo of t h e  
region present  i n  t h e  f i e l d  of v i e w  of t h e  measuring device. 

Note t h a t  t h e  l o c a t i o n  of cloud over t h e  ea r th ' s  sur face  and t h e  anisotropy 
of t h e  radiant energy f i e l d  due t o  o the r  causes ( n o n u n i f o d t y  of underlying 
sur face  and atmosphere) cause t h e  angular d i s t r i b u t i o n  of t h e  outgoing r ad ia t ion  
as w e l l  as t h e  r a d i a t i o n  balance t o  be highly dependent on concrete conditions 
a t  t h e  moment of observations. 

The calculated dens i ty  of t h e  i n t e g r a l  f l u x  of outgoing heat r ad ia t ion  a t  
t h e  top of t h e  atmosphere, as determined f o r  mean cloud conditions cor rec t  
t o  < +6% (Bibl.10) va r i e s  from 0.20 cal/cm2 min i n  t h e  p o l a r  regions t o  
0.36 cal/cm" min i n  t h e  subtropics.  The limits of t h e  dens i ty  of t h e  outgoing 
r a d i a t i v e  f lux vary from 0.a t o  0.394 cal/cm" min. The2mean dens i ty  of this 
f lux i n  t h e  s p e c t r a l  i n t e r v a l  of 2.5 - 4.0 IJ. i s  0.28 cal/cm m i n  (1.4. x 
x lo-" w/cm2) according t o  measurements by geophysical rockets a t  a l t i t u d e s  of 
100 - 500 km (Bibl.12). 

Important s tud ie s  of o p t i c a l  c h a r a c t e r i s t i c s  of t h e  atmosphere i n  t h e  visi
b l e  and inf ra red  por t ions  of t h e  spectrum as w e l l  as measurements of absolu te  
values of r a d i a t i v e  f luxes  and r ad ia t ion  balance a t  a l t i t u d e s  of up t o  500 km 
were car r ied  out with t h e  a i d  of t h e  VOS-type upper-air geophysicalprobes 
launched by t h e  Soviet  Union [ c f .  Sect.2, Chapt.1 (Bibl.1, 8 ,12 ,  l4)I. The 
United S t a t e s  i s  performing prolonged and extensive measurements with t h e  a i d  of 
Tiros type weather satellites. Certain measurements have been car r ied  out by 
using this apparatus, as w e l l  as t h e  IR apparatus of t h e  American exploratory
satellites, i n  rockets and satell i tes of t h e  Vanguard, Explorer, and o ther  
series (c f  . Sect .4, Chapt .I) Considerable experience i n  operating this ap
para tus  has been obtained i n  the  work with space-probe o r i en ta t ion  systems which 
operate i n  both t h e  v i s i b l e  and t h e  in f r a red  regions of t h e  spectrum (Bibl.20). 

Varied telemetering apparatus used t o  measure r a d i a t i v e  fluxes i n  the  wave
length  range considered above, owing t o  methodological considerations, are di
vided i n t o  photometers, radiometers, spectrophotometers, and actinometric in
struments. T h i s  d iv i s ion  is l a rge ly  conditional,  however. 

Various parameters are used t o  charac te r ize  o p t i c a l  apparatus, and ch ief ly :  

threshold s e n s i t i v i t y ,  characterized by t h e  least de tec tab le  or & 

measurable r a d i a t i v e  f l u x  Q,, w; 

instrument s e n s i t i v i t y  S, v/wa.tt; 

time constant ( i n e r t i a )  7 of instrument, i n  see ;  

limits of measurement of r ad ia t ive  f luxes  am,, - @mi,; 


s p e c t r a l  range of instrument h2 - h, ,  i n  P ;  

dispers ion  D and spectrum reso lu t ion  R ( f o r  s p e c t r a l  instruments);  

viewing angle w, i n  ster, or 6x deg; 

prec i s ion  of measurements. 
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The most important parameters of an instrument are determined by i t s  radi
ant  energy receptor.  

I n  t h e  visible and neighboring por t ions  of t h e  spectrum, optimal instrument 
parameters are assured by using various types of e lec t ronic  photomultipliers as 
depending on t h e i r  spec t r a l  cha rac t e r i s t i c s  (cf . fig.5.V) . 

In t h e  inf ra red  por t ion  of t h e  spectrum, t h e  highest  instrument parameters 
( 7 ,  m f ,  etc . )  can be achieved by using cooled receptors  (photores i s tors  and 
superconducting bolometers). The technica l  d i f f i c u l t i e s  involved i n  t h e  de
velopment of long-term coolant devices f o r  t h e  maintenance of t h e  required l o w  
temperatures, as w e l l  as t h e  marked increase  i n  t h e  dimensions and energy re
quirement of t h e  apparatus incorporating such devices, have at  present l e d  t o  
t h e  broad use of non-cooled receptors  of t h e  bolometric type. In t h e  near-IR 
region p hotoresis tors  are used, w h i l e  instruments admitting comparatively l a r g e  
i n e r t i a  contain thermoelements (Bibl.4, 8, 9, 10, 19, 20). 

The basic c r i t e r i o n  f o r  se lec t ing  t h e  op t i ca l  material used in t h e  apparatus 
; is  i t s  spec t r a l  t r ansmi t t i v i ty  9,which i s  determined by t h e  equation 

where 4, i s  thickness of t h e  l aye r  of substance and and Q,, are t h e  spec t r a l  
f lux dens i t i e s  before and after t h e  passage of rad ian t  energy through this 
layer .  

The m e c t r a l  transmission cha rac t e r i s t i c s  of c e r t a i n  widely used materials 
according t o  Hackford (Bibl.&), Yu.A.Ivanov and B.V.Tyapkin (Bib1.6) are pre
sented i n  Fig.2.X. 

For t h e  v i s i b l e  spec t r a l  region and t h e  adjoining regions, conventional 
glass opt ics  (approximately 0.3 - 3.0 CL)i s  used and spec ia l  g lasses  may be used 
i n  the  region reaching 12  - 13 p (Bibl.&). In cases where the  u l t r a v i o l e t  
region must a l so  be included (roughly a s  far as 0.1 P), q U a r t Z  op t i c s  i s  em
ployed, and i n  cases where t h e  u l t r a v i o l e t  region t o  be included must extend as 
far  as 0.17 P, and where t h e  near in f ra red  region must a l s o  be included ( a s  far 
as 5 - 6 p) ,  sapphire op t i c s  i s  used. I n  t h e  in f r a red  region, t h e  most M 
widely used materials are germanium (1.8 t o  15 - 20 1-1 or higher (Bibl.21), tha l 
l i u m  iodobromide (-5) and thal l ium chlorobromide (-6). The transmission 
range of t h e  l a t te r  two materials extends from 0.6 t o  45 P and from 0.4 t o  30 P, 
respect ively (Bib1.24.). 

The o p t i c a l  materials f o r  t h e  lenses  i n  t h e  spec t r a l  s e n s i t i v i t y  region 
usual ly  are selected i n  accordance with t h e  spec t r a l  i n t e r v a l  t h a t  must be iso
l a t ed .  If addi t iona l  correct ion of t h e  spec t r a l  range i s  required, in te r fe rence  
or absorption f i l ters  made of materials of various thickness are used. I n  this 
case t h e  o p t i c a l  system of the  instrument i s  so designed t h a t  t h e  filters, pa
t i c u l a r l y  those of t h e  in te r fe rence  type, are posit ioned i n  p a r a l l e l  beams (half
width M and t h e  loca t ion  of t h e  transmission maximum A,,, of t h e  in te r fe rence  
f i l t e r  e s sen t i a l ly  depends on t h e  angle of incidence of t h e  rays) Reflect ion 
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f i l ters  a l so  are widely used. 

A high r e f l ec t ing  power i n  t h e  IR region of t h e  spectrum i s  displayed by 
s i l v e r ,  gold and aluminum [as much as 92 - 99% (Bibl.6)1, with t h e  last-named 
element displaying a s u f f i c i e n t l y  high r e f l e c t i o n  f a c t o r  throughout t h e  o p t i c a l  
range 

Fig.2.X Transmission of Certain Materials i n  t h e  Infrared Region. 

Sect ion 2. Photometers 

The design of photometric instruments i s  based on t h e  comparison of two 
r ad ia t ive  f luxes.  In pr inc ip le ,  two types of photometer schemes a r e  possible:  
a) t h e  luminous cha rac t e r i s t i c  of t h e  receptor  (current-radiat ive f lux )  i s  used 
as t h e  photometric cha rac t e r i s t i c  and b) t h e  receptor  merely f u l f i l l s  the  r o l e  
of an ind ica to r  showing which one of t h e  compared f luxes i s  grea te r .  I n  t h i s  
last case t h e  different ia l -zero method is usual ly  employed: t h e  receptor /&7
t r i g g e r s  a l ight-at tenuat ing device (diaphragm, wedge, e t c  .) which operates un
til both fluxes become equalized. 

Photometers of both types may be based on t h e  s ing le  or double beam op t i ca l  
design. I n  t h e  l a t t e r  case, instead of two receptors,  a s ing le  receptor alter
na te ly  i l luminated by each of t h e  two compared sources may be employed. I n  
single-beam photometers (Fig .3a.X) t h e  photoe lec t r ic  receptor  R i s  i l l d n a t e d  
via l e n s  L and f i l t e r  f ( i n  spectrum analyzers t h e  f i l ters are per iodica l ly  re
placed). The diaphragm D serves t o  r e s t r i c t  t h e  viewing angle of t he  ins t ru
ment. The modulator M, whose ro ta t ion  i s  t r iggered by an e l e c t r i c  motor, i s  de
signed t o  in t e r rup t  t h e  r ad ia t ive  flux. This i s  done with t h e  object of u t i l i z 
ing  t h e  AC amplifier A- which i s  distinguished by t h e  s t a b i l i t y  of i t s  zero 
l e v e l  i n  t h e  presence of f luc tua t ions  i n  supply voltage, temperature, e t c .  I n  
addition, t h e  use of a narrowband amplifier tuned t o  t h e  modulation frequency 
makes it possible  t o  reduce t h e  noise l e v e l  and t h e  threshold f l u x  @, of t h e  in
strument. The output device 0 serves t o  convert t h e  s igna l s  t o  a form con
venient f o r  telemetering t o  t h e  ground. 

The output voltage of t h e  instrument (Fig.3a.X) is, as can be readi ly  seen, 
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where sD i s  t h e  diaphragm aperture;  $1 i s  t h e  spec t r a l  i l luminat ion densi ty  / a 8  
a t  t h e  input  of t h e  instrument (w-cm +-'); K i s  a coef f ic ien t  which takes  i n t o  
account t h e  amplif icat ion and conversion of t h e  s igna l  i n  t h e  c i r c u i t  ( t r a n s f e r  
funct ion);  PAA and Pfl are t h e  spec t r a l  transmissivities of t h e  l ens  and f i l t e r ;  
y1 i s  t h e  spec t r a l  s e n s i t i v i t y  coeff ic ient  of t h e  receptor  with respect t o  cur
r en t ;  F& i s  t h e  load res i s tance  of t h e  receptor;  and h l  - A 2  i s  the  spec t r a l  
range of t h e  instrument 

R TS 

RTS 

Fig.3.X Block Diagram of Single-Beam ( a )  Double-Beam (b)  
and Double-Beam Single-Receptor ( c  5 Photometers . 

Variation i n  any one of these quant i t ies  during t h e  instrument's operation 
causes measurement e r ro r s .  Therefore, a provis ion has been made i n  t h e  c i r 
c u i t s  f o r  per iodic  cont ro l  of t h e i r  s t a b i l i t y .  A s  a rule, t h e  s e n s i t i v i t y  of 
t h e  instrument i s  checked by mounting a standard r ad ia to r  ( a  luminous compound 
with constant ac t ion)  a t  t h e  input ,  w h i l e  t h e  s t a b i l i t y  of t h e  zero s igna l  i s  
checked by covering t h e  i n l e t  with a screen ( t h e  spec t r a l  range does not extend 
t o  i t s  heat emission). 

Note t h a t  elements a l t e r i n g  t h e  instrument's s e n s i t i v i t y  may be intro
duced i n t o  t h e  c i r c u i t  i n  order  t o  expand t h e  measurement range (Fig.3a.X). 

I n  a double-beam telephotometer with two receptors  PI and P2 (Fig.3b.X) 
t h e  measuring c i r c u i t  i s  so  designed t h a t  t h e  comparison device CD would measure 
t h e  d i f fe rence  i n  r ad ia t ive  f luxes  enter ing i n  t h e  d i r ec t ions  A and B. Such an 
o p t i c a l  scheme i s  bes t  f o r  t h e  case where one of t h e  compared sources gives a 
f l u x  whose magnitude i s  known i n  advance. A shortcoming of this scheme l i e s  i n  
t h a t  t h e  measurements are af fec ted  by a l l  t h e  quant i t ies  enter ing i n t o  equations 
of t h e  (3.X) type f o r  each channel. T h i s  shortcoming can be l a rge ly  o f f s e t  i f  
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t he  operat ion of t h e  device i s  based on t h e  d i f fe ren t ia l -zero  c i r c u i t  (or a 
c i r c u i t  maintaining a constant r a t i o  between t h e  s igna l s  i n  t h e  channels), with 

ui -u2 out =0. 

Equation (4.X) may be wr i t t en  i n  s impl i f ied  form on using means of t h e  
quantities enter ing i n t o  it (mean  with respect  t o  t h e  spectrum): 

S D  i J i ( M o  iKiRe iP f iyi = SD Z J Z O Z P O  2KZPf 2R; 2 ~ 2 ,  ( 5  .XI 

where J1 and J2 are t h e  i n t e n s i t i e s  of r a d i a t i o n  a t  t h e  input  of channels A and 
B, w1 and w 2  are t h e  s o l i d  Viewing angles of t h e  channels. 

From eq.(5.X) it can be seen t h a t  i n  this case i d e n t i c a l  changes i n  t h e  
corresponding quant i t ies  i n  both channels (Pol and PO^, FX.1 and &, e tc . )  do 
not a f f ec t  t h e  results of t h e  measurements. These results are usual ly  expressed 
i n  changes i n  one of t h e  parameters of t h e  cont ro l led  channel ( S O ,  K, e tc . ) .  

The d i f f i c u l t i e s  i n  the  regula t ion  of parameters i n  the  presence of varia
t i o n  i n  the  r ad ia t ive  flux complicate the  p r a c t i c a l  r ea l i za t ion  of the  d i f 
ferent ia l -zero c i r c u i t s  of telephotometers. Single-receptor c i r c u i t s  dis- /a9 
play  a major advantage. The technica l  va r i an t s  of double-beam single-receptor 
schemes are numerous. One of them i s  i l l u s t r a t e d  i n  Fig.3c.X, where modulator M, 
owing t o  i t s  specular lobes,  commutates t h e  channels a t  t h e  i n l e t  of receptor  P. 
The measuring c i r c u i t  of t h e  device i n  this case fixes only one var iab le  com
ponent of t he  s ignal ,  whose amplitude i s  proport ional  t o  the  difference i n  the  
f luxes  of rad ian t  energy a r r iv ing  a t  the  receptor  i n  d i r ec t ions  A and B (c lear 
ly ,  this var iab le  component i s  zero when the  f luxes  a r e  equal).  

Photocathode 


r 

Fig.4.X Circu i t  Diagram of t h e  Photometer 
Receptor. 

Such a scheme has t h e  advantages of t h e  double-beam scheme, ye t  a t  the  same 
t i m e  it makes i t  poss ib le  t o  preclude t h e  inf luencing of t h e  measurements by the  
parameters of t h e  p a r t  of t h e  instrument through which. both s igna ls  pass  i n  suc
cession. The advantages of t h e  double-beam single-receptor scheme are par t icu
l a r l y  important as regards measurements i n  the  longwave region of t h e  spectrum, 
where, i n so fa r  as possible ,  t h e  e f f e c t  of t he  n a t u r a l  r ad ia t ion  of the  o p t i c a l  
p a r t s  of t h e  scheme on the  measurements must be eliminated ( c f .  Sect.3 of this 
Chapter). 
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I n  instruments with a scanning system, devices assuring t h e  displacement of 
t h e  o p t i c a l  a d s  according t o  a specif ied l a w  are incorporated. 

I n  every scheme, t he  modulation frequency v, (frequency of i n t e r rup t ion  of 
t he  rad ia t ive  f lux)  must be matched t o  t h e  i n e r t i a  T of t h e  receptor  i n  i t s  
c i r c u i t  diagram. Thus the  s igna l  amplitude may reach a p r a c t i c a l l y  full value 
(95  - 98%), the  modulation per iod must be 3 - 4 t i m e s  as long as 7, i.e. 

( 3  t o  4X)7vm 5 1. ( 6  .XI 

A t i c a l  c i r c u i t  diagram of t h e  photometer receptor  (photomultiplier o r  
p h o t o c e 3  i s  shown i n  Fig.4.X (with f l u x  modulation), where R1, Rz? ..., R, de
note t h e  res i s tances  of t h e  supply-voltage d iv ider  of t h e  photomultiplier dy
nodes, w h i l e  R& and R,  denote t h e  load res i s tances  of t h e  photomultiplier and 
the  g r id  leakage of t h e  tube TI of t h e  first s tage  of t h e  AC amplifier. 

W e  Will determine the  f a c t o r s  a f fec t ing  t h e  i n t e g r a l  threshold f lux Q, de
t ec t ab le  or measurable by an instrument with such a c i r c u i t  diagram. Note here 
t h a t  t h e  method of ca lcu la t ing  Q f  can be a l s o  applied f o r  o ther  photoe lec t r ic  
receptors or f o r  a l imited spec t r a l  i n t e rva l .  

Threshold flux 
which i s  detemnined 

Q, i s  given with some above-unity signal/noise r a t i o  /250
by t h e  assurance f a c t o r  

where Us i s  t h e  minimum receptor-signal voltage t h a t  can be recorded by t h e  
c 

measuring c i r c u i t ;  hz i s  t h e  mean square voltage of t o t a l  noise at t h e  input  of 
t h e  receptor c i r c u i t ;  y i s  the  i n t e g r a l  current s e n s i t i v i t y  of t he  receptor ;  and 
FX i s  t h e  load resis tance.  

The extent  of t h e  f a c t o r  of assurance c i s  determined by t h e  purpose of t h e  
measurements. To de tec t  t h e  f l u x  @, we take c = 3 - 5 depending on t h e  re
quired r e l i a b i l i t y  of detection, w h i l e  f o r  f l u x  measurements within a specif ied 
degree of accuracy c must be correspondingly increased. For example, t o  measure 
f l u x  cor rec t ly  t o  1%we must have c 2 100 (Bibl.18). 

The mean square of t h e  total-noise  voltage f o r  t h e  c i r c u i t  i n  Fig.4.X will 
consis t  ch ie f ly  of t h e  mean square voltage of t h e  shot noise of shadow current-
isdue t o  the  photomultiplier cathode, amplified by t h e  dynode system t o  U?h.ph)-
t h e  thermal noise u f h ,  t h e  res i s tance  Q, ( i f  Q, 9 R g ) ,  t h e  shot noise of t h e- -
p l a t e  u:h,p. and of t h e  g r id  u:h.g,, and of t h e  currents  of t h e  tube TI, i.e. 

The mean square of t h e  f luc tua t ion  current  of t h e  shot noise  according t o  
t h e  Schottky formula (Bib1.25) i s  
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where isi s  the  mean shadow curren t  of t h e  receptor  photocathode, e i s  t h e  elec
t r o n  charge ( e  = 1.6 X 1O-l' k), and Av i s  t h e  frequency band passed by t h e  
amplifier. 

The analogous formula f o r  photomultipliers,  t ak ing  i n t o  account t h e  qli
f i c a t i o n  of shot noise by t h e  dynode system, as shown i n  (Bib1.25), i s  more 
complicated: -

i:,,,+,,= Zei, (1 +B)M2Av =ZeI, ( 1  +B ) M A v ,  (10.x) 

where I, i s  t h e  shadow cur ren t  of t h e  photomultiplier,  B i s  an  empirical coef
f i c i e n t  t h a t  t akes  i n t o  account t h e  add i t iona l  noise a r i s i n g  at t h e  dynodes, and 
M i s  t h e  amplification f a c t o r  of t h e  photomultiplier.  

For photomultipliers with e l e c t r o s t a t i c  focusing it may be assumed /251
f a i r l y  accura te ly  (Bib1.25) t h a t  B = 1.5. I n  View of this, we s h a l l  write as 
follows the  formula f o r  t h e  mean square voltage of t h e  shot noise of t h e  load 
r e s i s t o r  FQ, of t h e  photomultiplier 

( 11.x) 
I n  t h e  case t h a t  t h e  tube T1 does not  operate i n  a sa tu ra t ion  regime, and 

t h e  more so i n  t h e  case where it operates i n  t h e  e lec t romet r ic  regime and i n  t h e-
presence of a good i n s u l a t i o n  of t h e  g r i d  electrode, t h e  t o t a l  shot noise U&. +-
Uzh.g. of t h e  tube does not  exceed t h e  shot noise of t h e  photomultiplier (Bib1.25). 
To simplify t h e  ca l cu la t ions  we w i l l  assume t h a t  t h e  tube noise need not be 
taken i n t o  account. 

The mean square of t h e  f luc tua t ion  e.m.f .  of thermal noise according t o  t h e  
Nyquist formula (Bib1.25) i s  w r i t t e n  as 

-
U2th -=4kTR4Av, (12.x) 

where k i s  Boltzmannvs constant ( k  = 1.38 X 10-l" erg/deg) and T i s  t h e  tempera
ture of t h e  r e s i s t o r  R t .  

For a temperature T = 300°K, AV = 1 cps and RL =61~6ohm we have 5 t h "  1.3 x 
x v/cps. For t h e  same c i r c u i t  parameters M = 10 and I, = 10-'and from-
e q . ( I l . ~ ) ,  we have Ush.ph .  9 x v, i.e., f o r  t h e  customary parameters of- -
t h e  c i r c u i t  Ush.ph. % uth and t h e  second term of eq.(8.X) a l s o  may be disregarded. 
Hence, f o r  t h e  standard c i r c u i t  diagram and f o r  a low noise  level of t h e  first 
amplifier stage,  t h e  working formula Will be, on t h e  basis of t h e  above reason
ing, 

C
@* NN -Y 15eIsMAv,  (13 .XI 

The bandwidth Av, of t h e  ampl i f ie r  frequencies i s  - unless spec ia l  s t eps  
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are taken t o  change t h e  transmission band i n  t h e  amplifier c i r c u i t  - determined 
by t h e  t i m e  constant T1 i n  t h e  c i r c u i t  diagram of t h e  receptor.  For t h e  above 
case of t h e  low-inertia receptor,  we have TI = Rf,C, and 

1
Av=-, 

2R.t c s  

where C ,  i s  t h e  s t r a y  capacitance of t h e  photomultiplier c i r c u i t  diagram. 

For R t  = lo6 o h  and C, = 10 p f ,  we have T1 = low5 sec and Av = 50 cps. 
The allowable modulation frequency i s  Vm = 25 cps, as follows from eq.(6.X). 

It must be borne i n  mind t h a t  for a low modulation frequency (vm < 1 cps) 
i n  emission receptors,  allowance must be made f o r  t h e  f l i c k e r  noise of t h e  

- iB
photocathode, U;L= 2 e i R i (  1 -I--) ,where B i s  a constant which depends on t h e  

proper t ies  of t h e  photocathode with t h e  area A. /252 
I f  t h e  receptor  used i s  a photomultiplier with a mul t ip l e - s l i t  photo

cathode, which displays t h e  optimal parameters (I, = a, M = 10 7, T = 
= lo-' sec,  and Y = 10' a/ lu)(Bibl . l8) ,  then [as i s  implied by eq.(13.X)] it 
is possible  t o  measure t h e  m i n i m a l  f l u x  of t h e  order of = 10-l' l u  o r  w 
cor rec t  t o  1%. 

Instruments incorporating photomultipliers with SbCs  photocathodes make 
it possible  t o  measure luminous f luxes  of 2 w within t h e  same degree of 
accuracy, but then N 10 gm-oh, which markedly enhances t h e  instrument in
er t ia  (-rl - 10-l sec) and reduces the  allowable modulation frequency (vm - 10 cps). T h i s  c l ea r ly  r e s t r i c t s  t h e  poss ib le  speed of measurements and scan
ning f o r  t h e  instruments of this kind, and it a l s o  increases  t h e  f l i c k e r  noise. 

The threshold f l u x  m f  a r r iv ing  at  t h e  photometer receptor,  on t h e  other  
hand, i s  determined by i t s  o p t i c a l  system. The la t te r  should be so  designed 
t h a t  even under t h e  pessimal conditions of observation t h e  r ad ia t ive  f l u x  @ m i n  
ar r iv ing  at  t h e  de tec tor  would not be smaller than m f  The method of se lec t ing  
t h e  parameters of t h e  o p t i c a l  scheme may be i l l u s t r a t e d  by t h e  following ex
ample (where we will assume t h a t  t h e  aber ra t ions  of t h e  o p t i c a l  system are 
small). 

Suppose a photometer i s  located a t  t h e  a l t i t u d e  h (Fig.5.X) and measures a 
r ad ia t ive  f l u x  d i f fuse ly  r e f l ec t ed  by an area a whose spectral r e f l e c t i o n  coef
f i c i e n t  i n  t h e  d i rec t ion  of t h e  instrument i s  px If t h e  m i n i m a l ,  f o r  t h e  parc  
t i c u l a r  conditions of these  measurements, i n t e n s i t y  of t h e  r ad ia t ive  flux ilzl 
luminating area a uniformly from t h e  e n t i r e  upper half-space i s  J lminw-ster 
+-1 a t  t h e  surface of this area, then  t h e  minimal flux "in subjec t  t o  
measurement by receptor  R w i l l  be 

A2 
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where wi = i s  t h e  s o l i d  angle a t  which t h e  entrance aper ture  D with t h e  
h2 

area a0 i s  v i s i b l e  from t h e  center  of t h e  observed area a; w = -a i s  t h e  
h2  

s o l i d  angle of t h e  instrumentts f i e l d  of view; P la  and Pio are t h e  s p e c t r a l  /253 
t r ansmiss iv i t i e s  of t h e  atmosphere and of t h e  instrument's op t ics ,  respectively.  

The requirement t h a t  t h e  threshold flux @,,measurable by t h e  c i r c u i t ,  
should agree with t h e  minimal f l u x  Q m i n  sub jec t  t o  measurement by t h e  ins t ru
ment concerned (a,  = a m i n )  can be used t o  determine t h e  " a 1  poss ib le  
area a. of t h e  entrance aper ture  of t h e  instrument or t h e  m i n i m a l  permissible 
viewing angle w of t h e  instrument. 

Fig.5.X. Diagram f o r  Determining t h e  Radiative 
Flux Incident an t h e  Photometer. 

A s  can be seen from Fig.S.X, t h e  ins t rument t s  f i e l d  of View i s  r e l a t ed  t o  
t h e  working area A of t h e  receptor  and t h e  d i s t ance  f from t h e  p lane  of t h e  en
t rance  blende t o  t h e  image plane ( i f  t h e  d i s t ance  t o  t h e  observed objec t  i s  so 
large t h a t  t h e  image i s  obtained i n  t h e  f o c a l  p l ane  of t h e  l ens )  by t h e  r a t i o  

(16.X) 

where d i s  t h e  diameter of t h e  working area A of t h e  receptor  and 6, i s  the  
viewing angle i n  minutes of angle. 

Thus, for given dimensions of t h e  receptor  or of t h e  surveyed area a, only 
t h e  s i z e  of t h e  entrance aper ture  a0 need be var ied  i n  order t o  match I, with 
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As an example, consider ce r t a in  models of photometers incorporated i n  t h e  
upper-air geophysical probes (Bibl.8, I.&) . 

The TF9 photometer i s  designed t o  measure t h e  angular d i s t r i b u t i o n  of 
luminance along t h e  scanned surface. The spec t r a l  range of t h e  instrument i s  
determined by the  type of t h e  replaceable f i l t e r  mounted i n  t h e  ro t a t ing  d isk  
located i n  t h e  pa th  of t h e  r ad ia t ive  f l u x  toward t h e  receptor  (one type of 
photomultiplier o r  another) . The spec t r a l  regions i so l a t ed  by ce r t a in  g l a s s  
f i l ters,  t h e  approximate range of e c t r a l  s e n s i t i v i t y  of t h e  photomultiplier 
with Sb-Cs photocathode (Bibl.2, 257and t h e  energy d i s t r i b u t i o n  i n  the  s o l a r  
spectrum at  a l t i t u d e s  of 80 - 100 (Curve 1)are presented i n  Fig.6.X. 

The TF9 photometer (Fig.7.X) i s  based on t h e  single-beam scheme. To main
t a i n  instrument s t a b i l i t y ,  a s t ab le  source with a known luminance ( a  luminous 
compound with constant ac t ion)  i s  mounted i n  tne d i sk  with l i g h t  f i l ters  12. 
The instrument i s  provided with a ro ta ry  scanning head containing mirror 1and 
collimator 3. The la t te r  i s  represented by a bundle of thin-walled tubules with 
blackened inner  surface.  Their length i s  so selected t h a t  t h e  instantaneous /255
viewing angle of t h e  receptor  i s  2'. To assure a i r t i gh tness  of t h e  container, 
t he  p a r t  of  scanning head pro jec t ing  from t h e  container i s  covered with trans
parent  dome 2. 

Scanning i s  accomplished during r o t a t i o n  of t h e  head through 360' about i t s  
o p t i c a l  ax is  at  t h e  rate of one revolution p e r  minute. Thus, when the  upper-air 
probe i s  i n  a pos i t i on  above t h e  Equator, a p i c tu re  of t h e  d i s t r i b u t i o n  of 
measurable radiant  e n e r a  i s  obtained over t h e  planet ' s  d i sk  from one horizon 
through t h e  nadir  t o  another i n  a zone 2' wide. 

The f i l t e r s  are mounted i n  d isk  12 which i s  ro ta ted  by means of t h e  Maltese 
mechanism 11. The contacts  9 and 10 serve t o  t ransmit  information on t h e  posi
t i o n  of t h e  d isk  with f i l ters .  

Interrupt ion of t h e  luminous flux i s  accomplished by means of modulator 5. 
Mounted on the  modulator shaf t  i s  t h e  r o t o r  of t h e  generator 6 of reference 
pulses  supplied t o  the  synchronous output detector .  A l l  t h e  mobile p a r t s  of 
t h e  instrument are driven by e l e c t r i c  motor 4. Photomultiplier 7 i s  powered 
across d iv ider  8 on r e s i s t o r s .  

The AC amplifier and t h e  synchronous output de tec tor  are mounted i n  t h e  
e lec t ronic  unit. The dependence of output voltage on t h e  measured rad ia t ion  
f lux i s  usually of a semilogarithmic character  (Bibl.8). 

Spectrum analyzer SAZ ( o r  photoe lec t r ic  r ad ia t ion  meter FIRj(Eibl.8) i s  
designed t o  record t h e  luminance of t h e  sky at  high a l t i t u d e s  i n  various spec
t r a l  i n t e r v a l s  i so l a t ed  by m e a n s  of a set of filters. The ove ra l l  spec t r a l  
range of t h e  instrument encompasses the  near-W and I R  regions, i f  replaceable 
photomultipliers of various types a r e  used (Bibl.l.4). The instrument whose dia
gram i s  shown i n  Fig.8.X represents  a photometer based on t h e  s inglebeam de
sign. Its spec t r a l  cha rac t e r i s t i c s  are determined by t h e  f i l ters used (of the  
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Fig.6.X Spec t ra l  Charac te r i s t ics  of Photometer. 

Fig.7.X Optical-Kinematic Diagram of t h e  TF9 
Telephotometer. 

UFS, ZhZS and o ther  types) ( see  Fig.6.X). The o p t i c a l  diagram of t h e  ins t ru
ment includes inlet  shade 3, quartz l e n s  4, l i g h t  f i l ters  fi - f5 mounted i n  the  
ro t a t ing  disk 6, wedges mounted i n  disk 7, concave sphe r i ca l  mirror 13 and re
ceptor l.4(photomultiplier) .  Mounted i n  disk 6 containing a set o f 8 f i l t e r s  i s  a 
fixed-action luminous compound with a luminance of t h e  order of 10- s t i l b  
(Bib1 .a) .  Disk 7 contains a free aperture,  reducers wi th  transmission of 1 
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and lo%, and a shu t t e r  f o r  zero reading. The use of three degrees of reductzon 
by means of o p t i c a l  wedges makes it poss ib le  t o  obta in  a dynamic range of 10 . 
The durat ion of each measurement with a l i g h t  f i l t e r  i s  0.2 sec, and t h e  t o t a l  
cycle of measurements (24 ind iv idua l  measurements) lasts 6 sec (Bib1 .a) .  
Photoresis tor  2, which t r i g g e r s  t h e  shu t t e r  relay 1, serves t o  p ro tec t  t h e  re
ceptor against  excessive i l lumination. 

-30 
c - 1 0  

Fig.8.X Diagram of t h e  SAZ Spectrum Analyzer (FIR, 
Photoelectr ic  Radiation Meter) . 

The receptor s igna l  proceeds t o  t h e  se l ec t ive  amplifier 11and thence t o  
t h e  synchronous de tec tor  10 which i s  supplied with reference voltage from 
t h e  generator 9 ,  actuated by motor 8 synchronously with t h e  modulator 5. The

/256 
r e c t i f i e d  s igna l  proceeds t o  t h e  output device 12 and t o  t h e  telemetering system
16. The instrument i s  powered from t h e  power system 15 of t h e  instrument con
t a i n e r  ( t o  broaden t h e  range, on any increase  i n  s ignal ,  t h e  power supply t o  
t h e  photomultiplier automatically decreases).  

According t o  A.Ye.Mikirov $ B i b l . Z ) ,  t h e  s e n s i t i v i t y  of t h e  spectrum ana
lyze r  described above i s  9 x 10- s t i l b  f o r  i n t e g r a l  l i g h t  and 1.5 X 10-l' w * 

cm-" ster-1-g -1 f o r  indi6ddual  wavelengths. The range of luminances measured 
i s  from 5 x 10 t o  5 X 10- s t i l b .  

Instruments of this type require p r i o r  ca l ibra t ion .  T h i s  may be accom
pl ished with the  a i d  of a device of t h e  photometric bench type with a C a l i 
brated source and with reducers i n  t h e  form of neu t r a l  f i l ters (NS) .  A f i l t e r  
of t h e  S type (GOST, AU-Union State Standard 7721-55) is used t o  ad jus t  t h e  
source's spectrum t o  t h e  s o l a r  spectrum, and opal glass assuring uniform i l l u r n 
ina t ion  of t h e  sens i t i ve  area i s  mounted i n  f ron t  of t h e  inlet  window of t h e  in
strument. 
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The luminance B of t h e  opa l  g l a s s  without reduction by l i g h t  f i l t e r s  satis
fies Lambert’s l a w  

where E i s  t h e  i n t e g r a l  i l lumina t ion  of t h e  g l a s s ,  P i s  t h e  i n t e g r a l  1urni.n- /257 

ous flux i n  t h e  s o l i d  viewing angle of t h e  receptor  w = %; J i s  t h e  glow in
r 


t e n s i t y  of t h e  source; s i s  t h e  i l luminated area of t h e  opa l  g l a s s ;  r i s  t h e  
distance between g l a s s  and receptor;  LY i s  t h e  angle of incidence of t h e  p a r a l l e l  
beam on t h e  g lass .  

I n  t h e  presence of light-reducing f i l ters ,  we have t h e  following working 
formula f o r  ca l ib ra t ing  t h e  telephotometer: 

(18.X) 


where Rae, R s ,  RNS are t h e  transmissivities of t h e  opa l  g lass ,  t h e  S type f i l t e r  
and t h e  N S  neu t r a l  l i g h t  f i l t e r ,  respectively.  

The s igna l  a t  t h e  instrument output may be ca lcu la ted  according t o  t h e  
known s p e c t r a l  transmission of t h e  f i l t e r  i n  t h e  instrument and t h e  s e n s i t i v i t y  
of t h e  receptor.  

Section 3.  Radiometers 

The design p r i n c i p l e s  of radiometers and photometers a r e  similar, but 
radiometers d i sp lay  a number of s p e c i a l  features associated w i t h  operation i n  a 
more distant region of t h e  I R  spectrum. These features are due t o  t h e  need t o  
exclude from t h e  results of measurements t h e  n a t u r a l  r a d i a t i o n  of elements of 
t h e  o p t i c a l  system of t h e  instrument (lenses,  f i l ters ,  mirrors, modulator, etc.) .  
The optimal instrument parameters, p a r t i c u l a r l y  as regards r a p i d i t y  of action, 
are assured by using bolometers as non-cooled receptors.  The thermoelements 
s t i l l  display considerable i n e r t i a  w h i l e ,  on t h e  o the r  hand, t h e  use of optico
acoustic receptors involves d i f f i c u l t i e s  owing t o  t h e  need t o  con t ro l  t h e  micro
phone e f f e c t  (Bibl.1, 20). 
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Fig .9 .X Circui t  Diagram 
of t h e  Bolometer. 



Present-day bolometers (Bibl.15, 19, &) disp lay  a good qual i ty  of t h e  
blackening of t h e  s e n s i t i v e  surface, bu t  are Vir tua l ly  nonselective i n  the  spec
tral range of 1- 40 p. Semiconductor ( thermis tor )  bolometers with a compara
t i v e l y  high s e n s i t i v i t y  and r e s i s t ance  are most widely used i n  radiometers. 
Thus, American-made bolometers have a r e s i s t ance  of 1- 10 me#ohm, a t i m e  con
s t a n t  of severa l  mill iseconds and t h e  threshold f lux  @f = 10- w (B ib1 .a ) .  
Bolometers are included i n  p a i r s  i n  t h e  measuring c i r c u i t  so t h a t  one of them 
(compensation bolometer) would, i n s o f a r  as possible,  o f f s e t  t h e  e f f e c t  of t h e  
f luc tua t ions  i n  ambient temperature and, occasionally, i n  t h e  supply voltage as 
w e l l ,  on t h e  performance of t h e  o the r  (measuring) bolometer. 

Figure 9.X shows t h e  elementary bolometer c i r c u i t  diagram, which i s  /258
widely used i n  radiometers (Bibl.19, 24). I n  this diagram t h e  compensation ele
ment fu l f i l l s  t h e  r o l e  of t h e  load r e s i s t o r  f o r  t h e  measuring bolometer. The 
bolometer i s  powered by a constant-voltage source U s u p p  1 The l m i n o u s  flux 
inc ident  on t h e  measuring bolometer RT i s  modulated wi th  t h e  frequency v,. 

The amplitude AU, of t h e  va r i ab le  s i g n a l  voltage a r r i v i n g  a t  t h e  inpu t  ofI: t h e  AC amplifier ( tube  TI ) equals t h e  voltage d i f fe rence  a t  t h e  r e s i s t o r  of t h e  
compensation bolometer R ,  with respeczt t o  t h e  presence and absence of illumina
t i o n  of t h e  measuring bolometer whose r e s i s t ance  RT then changes by ART,  i.e., 

The magnitude of ART i s  propor t iona l  t o  t h e  change i n  t h e  temperature AT 
of t h e  measuring bolometer and t h e  heat balance due t o  t h e  absorption of radi
an t  energy. Hence, f o r  a semiconductor ( thermis tor )  bolometer we may write 

( 20 .x) 

where - i s  the  temperature coe f f i c i en t  of res i s tance ,  B i s  a constant which 
T" 

depends on t h e  material of t h e  bolometer concerned, A@ i s  t h e  change i n  t h e  mean 
power of t h e  modulated luminous f lux ,  and @ i s  t h e  conversion ( s e n s i t i v i t y )  
f a c t o r  of t h e  bolometer. 

Equations (19 .X)  and (20.X) imply t h a t  t h e  receptor  s e n s i t i v i t y  S i n  v/w i n  
such a c i r c u i t  diagram will depend on t h e  temperature, supply voltage and t h e  
parameters of t h e  bolometer i tself .  
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It must be noted t h a t  t h e  p o s s i b i l i t y  of enhancing s e n s i t i v i t y  by increas
i n g  t h e  supply vol tage  i s  Limited by t h e  m a x i m a l l y  permissible d iss ipa ted  power 
W,, , (or permissible bolometer cur ren t  i,, m ) under operating conditions 

There w i l l  be no temperature (T) dependence of t h e  receptor  i f  t h e  tempera
ture coe f f i c i en t  of t h e  receptor  r e s i s t ance  i s  constant.  T h i s  may be accom- 1259 
p l i shed  by means of a bridge c i r c u i t .  The value of CY depends on t h e  modulation 
frequency v, of t h e  radiative (luminous) flux and on t h e  i n e r t i a  (t ime constant)  
T of t h e  bolometer, s ince  t h e  mean power of t h e  f l u x  sensed by t h e  bolometer de
creases with increas ing  modulation frequency. Ekperimental (Bibl.15) and theo
r e t i c a l  [ f o r  semiconductors with an  elementary mechanism of c a r r i e r  recombina
t i o n  and with s inuso ida l  modulation (Bibl.17) 1 f ind ings  po in t  t o  a dependence of 
t h e  form of 

1s, = ----__,Sg--
1 I +4n2v29 (23  .X) 

whereS,,  and SO are t h e  s e n s i t i v i t i e s  of t h e  bolometer i n  t h e  Dresence of t h e  
modulation frequency v, and i n  t h e  absence of modulation v, = '0 (corresponding
ly ,  CY and a,).  

The time constant of t h e  present-day non-cooled semiconductor bolometers i s  
s t i l l  undesirably l a r g e  [T = approximately several milliseconds (Bib1.24) I. 
T h i s  c o q l i c a t e s  using them i n  t h e  instruments and l eads  t o  a s u b s t a n t i a l  de
crease i n  s e n s i t i v i t y  S v  during t h e  modulation of t h e  r a d i a t i v e  flux. 

The p r i n c i p a l  types of noise i n  semiconductor bolometers, which a f f e c t  t h e  
threshold flux Qf , are thermal and cur ren t  noise (Bibl.15). Current noise 
arises during passage of t h e  cur ren t  across  t h e  bolometer and i s  due t o  de fec t s  
i n  t h e  contacts between t h e  bolometric f i l m  and t h e  current-conducting elec
trodes,  contacts between indiv idua l  g ra ins  of t h e  f i l m  i t se l f ,  f l uc tua t ions  i n  
t h e  number of free e l ec t rons  i n  t h e  semiconductor fi lm, and o ther  e f f e c t s .  The 
magnitude of t h e  cur ren t  no ise  depends on t h e  modulation frequency v,, namely,-

-1Uy = Atvm i2RL%v, where A t  i s  a constant which depends on t h e  production tech
nology of t h e  bolometer. W e  will assume t h a t  t h e  magnitude of this noise i s  
smaller than t h a t  of t h e  thermal noise. 

A t  t h e  low modulation frequencies permitted by t h e  i n e r t i a  of t h e  bolometer 
(of  t h e  order of t e n s  of cps and less), t h e  noise of t h e  amplifier tube s tage  
(Fig.9.X) i s  determined not by shot e f f e c t s  but c h i e f l y  by t h e  cathode f l i c k e r  
e f fec t .  For high-voltage bolometers (RT 2 l o5  ohm) this noise  may be disre
garded i n  comparison with t h e  thermal noise of t h e  c i r c u i t  (Bibl.15). In  this 
case t h e  threshold f l u x  Qf f o r  this c i r c u i t  diagram (Fig.9.X) W i l l  be determined 
from the  following r e l a t ion ,  which i s  similar t o  t h a t  considered earlier ( c f .  
Sect. 2) : 

where Ff i s  t h e  dens i ty  of t h e  threshold flux inc iden t  on a receptor with area A 
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and s e n s i t i v i t y  S (with respec t  t o  voltage).  

For c = 1and Av = 1cps, t h e  working formula i s  w r i t t e n  as /260 

The c i r c u i t  of t h e  instrument wi th  r e s i s t ances  R = R, = RT = 2 X l o6  o h  
and S o  = 500 v/w can de tec t  t h e  f l u x  Qf = F f A  = 5 X 10-l' w ( i n  t h e  absence of 
modulation). If t h e  t i m e  constant T of t h e  bolometer i s  5 msec and t h e  modula
t i o n  frequency v, = 50 cps, then, as eq.(23.X) implies, t h e  bolometer sensi
t i v i t y  decreases t o  S v  = 270 v/w and t h e  threshold f l u x  de tec tab le  by t h e  bolo
meter increases  t o  Q f  = 9 x 10-l' w. For bolometers wi th  a high i n e r t i a  or with 
a high modulation frequency, t hese  e f f e c t s  manifest themselves even more dis
tinctl y  . 

Note t h a t  t he  use of highly s e n s i t i v e  receptors may require taking i n t o  ac
count t h e  quantum noise of t h e  de tec ted  f lux .  The formula f o r  ca lcu la t ing  t h e  
minimal f l u x  q m i n  focused by t h e  o p t i c a l  system on t h e  receptor is ,  by analogy 
with eq.(lS.X), w r i t t e n  as 

(26 .x) 

where � e a r t h  1 i s  t h e  s p e c t r a l  emiss iv i ty  of t h e  underlying surface of t h e  p l ane t  
or cloud; qTe a r  t h  i s  t h e  s p e c t r a l  dens i ty  of t h e  r ad ia t ion  i n t e n s i t y  of an  ab
so lu t e ly  black body, calculated from Planck's formula f o r  t h e  m i n i m a l  tempera
t u r e  T e a r t h  of t h e  underlying surface; r k a  i s  t h e  s p e c t r a l  dens i ty  of t h e  radia
t i o n  i n t e n s i t y  of t h e  atmosphere. 

t h e  first termNote t h a t  on t h e  dark s ide  of t h e  p l ane t  or f o r  > 3 - 5 IJ., 
of eq.(26.X) w i l l  be absent. The viewing angle f o r  a receptor w i t h  spec i f ied  
dimensions i s  determined from eq.( 16.X) or eq.( 17 .X) .  It i s  analogously pos
s i b l e  t o  f ind  from t h e  requirement f o r  t h e  matching of f luxes  Q f  = a m i n ,  de
terminable from eqs.(25.X) and (26.X), t h e  required a rea  of t h e  entrance aper
t u r e  of t h e  teleradiometer op t ics .  

W e  W i l l  now consider how these  general  pos tu l a t e s  can be t r ans l a t ed  i n t o  
r e a l i t y  i n  spec i f i c  v a r i e t i e s  of instruments. 

The five-channel radiometer of t h e  s a t e l l i t e s  of t h e  Tiros and Nimbus 
s e r i e s  i s  designed t o  measure r a d i a t i v e  fluxes i n  f ive s p e c t r a l  i n t e rva l s ,  iso
l a t e d  by means of f i l t e r s .  The instrument i s  p a r t  of t h e  complex t o t a l  of in
strumentation used i n  t h e  weather s a t e l l i t e s  and hence i t s  operating s p e c t r a l  
i n t e r v a l s  a r e  so se lec ted  as t o  obta in  information on t h e  state of t h e  atmosphere 
(including i t s  lower l aye r s )  and on t h e  temperature of emitt ing surfaces as well. 

The p r i n c i p a l  features of t h e  five-channel radiometers i n s t a l l e d  i n  various 
satell i tes of this series have remained v i r t u a l l y  unchanged (Bibl.19). W e  
W i l l  examine them on t h e  b a s i s  of desc r ip t ion  by R.Estrkheymer e t  al. (Bib1.27 

The s p e c t r a l  ranges of t h e  radiometer channels and t h e  methods of t h e i r  
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i s o l a t i o n  (materials of t h e  l enses  Ll and L2 and of t h e  f i l t e r )  are specified 
i n  Table l.X. The s p e c t r a l  c h a r a c t e r i s t i c s  of t h e  channels are given i n  
Fig .10.X. 

TABLF; l . X  

SPECTRAL RANGES AND OPTICAL MATERIALS OF RADIOMETER CHANNELS 

Channel 
Lens 

.-. 

Germanium (L1 and L2) 

Germanium ( L1 and L a )  

0.2 - 5.5 	 Sapphire (L1 ) , barium 
f l u o r i d e  ( L2) 

m-5 (Ld 

F i l t e r  
~ 

In te r fe rence  band f i l t e r  

Indium antimonide ( InSb) 
and arsenic  t r i s u l f i d e  
( A s a s s  

No f i l t e r  

InSb 


In te r fe rence  band f i l t e r  


The c h a r a c t e r i s t i c s  presented above show t h a t  channel 1performs measure
ments of r ad ia t ion  i n  t h e  basic w a t e r  - vapor absorption band with a center  a t- 6.3 p ;  channel 2, r a d i a t i o n  i n  t h e  atmospheric transparency window; channel 3, 
t h e  s o l a r  r ad ia t ion  r e f l ec t ed  by t h e  e a r t h  and i t s  atmosphere; channel 4,  t h e  
outgoing r ad ia t ion  of t h e  earth-atmosphere system; and channel 5, t h e  r e f l ec t ed  
luminous energy i n  t h e  s e n s i t i v i t y  range of vidicon and photographic fi lms. 
Each of t h e  f i v e  channels of t h e  radiometer i s  designed t o  operate autonomously, 
and a l l  are of t h e  same design. The g r e a t e s t  s e n s i t i v i t y  i s  displayed by chan
n e l  1, s ince  t h e  r ad ia t ion  it measures i s  formed by t h e  upper l aye r s  of t h e  at
mosphere, which have a low temperature. 

A diagram of t h e  o p t i c s  and t h e  block diagram of a channel of t h e  radiome
t e r  are shown i n  Fig.1l.X. The r ad ia t ion  a r r i v i n g  from two mutually perpendicu
lar d i rec t ions  A and B i s  r e f l ec t ed  by aluminized s ides  of prism 4 and d i rec ted  
toward t h e  d i sk  of t h e  r e f l e c t o r  i n t e r r u p t o r  5. One half  of d i sk  5 i s  blackened 
and t h e  o ther  ha l f  i s  an aluminized mirror. The r ad ian t  energy r e f l ec t ed  from 
both halves of disk 5 passes  through t h e  o p t i c a l  f i l t e r  3 and i s  focused by l e n s  
2 on t h e  receptor 1. The receptors  used i n  a l l  channels are semiconductor 
( thermis tor )  bolometers. Viewing angle: 5 x 5'. 

During r o t a t i o n  of t h e  modulator, i t s  mirror p a r t  transmits t o  t h e  re- /263 
ceptor a l t e r n a t e l y  t h e  r a d i a t i o n  a r r iv ing  from d i r e c t i o n  A and from d i r ec t ion  B. 
If t h e  r ad ia t ion  a r r iv ing  a t  t h e  receptor from one of t hese  d i r ec t ions  origin
ates from t h e  ear th ,  then t h e  r ad ia t ion  a r r iv ing  from t h e  o the r  d i r e c t i o n  or ig i 
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Fig.1O.X Transmission (Pox) Curves of t h e  Opt ica l  
Chamels of t h e  Radiometer. 

The numbers (1- 5 )  of t h e  curves correspond t o  
t h e  numbers of  t h e  channels. 

1 
Counter  
Channel 


Fig.ll.X Optical-Kinematic Diagram of a Radiometer Channel. 
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nates  from outer  space. Thus, t h e  channels operate on t h e  b a s i s  of t h e  double-
beam s i n  le-receptor scheme, and t h e  assumption i s  t h a t  t h e  r ad ia t ion  ( l i g h t  
emission7 from outer  spa.ce i s  v i r t u a l l y  zero and may be used as a reference 
c r i t e r i o n .  

The reflectors/modulators of every channel of t h e  radiometer a r e  rotated 
by t h e  same synchronous motor D. The modulation frequency i s  44 cps. 

Note t h a t  owing t o  t h e  symmetry of t h e  o p t i c a l  pa ths  A and B t h e  r e s u l t s  of 
t h e  measurements do not depend on which one of t hese  pa ths  faces  t h e  ear th .  

The na tu ra l  r ad ia t ion  of t h e  i n t e r r u p t o r  i s  v i r t u a l l y  not modulated, so 
t h a t  both of i t s  halves always l i e  i n  t h e  f i e l d  of v i e w  of t h e  de tec tor .  The 
r ad ia t ion  of t h e  o p t i c a l  elements ( l enses  and f i l t e r )  located beyond the  i n t e r 
r y t o r  a l s o  i s  not modulated. The r e f l e c t i n g  s ides  of t h e  fa i r ly  massive g l a s s  
prism 4 must have v i r t u a l l y  i d e n t i c a l  temperatures and hence a l s o  t h e i r  contri
bution t o  t h e  measured fluxes w i l l  be v i r t u a l l y  i d e n t i c a l  and wi l l  be eliminated 
through t h e  AC amplification of t h e  s igna l ,  s ince  then  it w i l l  prove t o  be non
modulated. 

These f ea tu res  of t h e  o p t i c a l  system of t h e  instrument make it poss ib le  t o  
markedly reduce t h e  e f f e c t  of t he  na tu ra l  r ad ia t ion  of t h e  elements of this 
system and hence a l s o  t h e  e f f e c t  of t h e  instrument temperature on t h e  measure
ments. 

A spec ia l  f e a t u r e  of t h e  o p t i c a l  system of channel l i s  t h e  mounting of a 
concentric germanium immersion l e n s  2 d i r e c t l y  ahead of t h e  receptor (Fig.1l.X). 
T h i s  l e n s  enhances S owing t o  t h e  normal incidence of f lux on t h e  receptor. The 
block diagram of t h e  amplifier of channel 1 contains, moreover, preamplifier PA, 
assembled on an SK6419 type e lec t ron  tube connected by a t r iode .  I n  the  o the r  
channels, this s tage  i s  absent and only t h e  bas ic  ampl i f ie r  BA i s  present.  

The basic six-stage ampl i f ie r  (Fig.12.X) i s  assembled from t r a n s i s t o r s  
Tl - Ts ( t h e  first two are of t h e  2Nl-027type and t h e  o thers ,  of t h e  2N54.3 
type).  The first s tage  i s  based on a common-collector c i r c u i t ;  the  second, on 
a common-base c i r c u i t ;  and t h e  t h i r d ,  on a conmoll-emitter c i r c u i t .  

To assure a high signal/noise r a t i o ,  a narrowband AC amplifier tuned t o  t h e  
modulation frequency (-44 cps) i s  employed. S e l e c t i v i t y  of t h e  amplifier i s  
assured by incorporating a negative feedback i n  t h e  c i r c u i t  (between t h e  fou r th  
and second s tages)  wi th  respect t o  t h e  double T-bridge tuned t o  the  modulation 
frequency. The bridge i s  assembled from re s i s t ances  R2, R3, R4 and capacitances 
C1 ,  C2, C3. For b e t t e r  tuning of t h e  bridge, t h e  r e s i s t ance  R1 i s  addi

t i o n a l l y  included (Bibl.3). The presence of a strong negative DC feedback 

/265 

s t a b i l i z e s  t h e  performance of t h e  t r a n s i s t o r  T2. The last  two s tages  of t h e  

amplifier, assembled from t r a n s i s t o r s  T5 and ‘k, a l s o  a r e  encompassed by t h e  

negative feedback c i r c u i t .  The feedback coe f f i c i en t  may be varied by varying 

one arm of t h e  d iv ide r  connected t o  this c i r c u i t ,  by means of t h e  potentiometer 

R5. Thus, t h e  ampl i f ica t ion  f a c t o r  changes wTth t h e  tuning of t h e  c i r c u i t .  


The presence of feedback between t h e  s tages  broadens t h e  range of measure
ments and s t a b i l i z e s  the  amplification, w h i l e  a t  t h e  same time it  reduces t h e  



output impedance of t h e  amplifier. The voltage amp31ification f a c t o r  f o r  t h e  
first four  s tages  ( t r a n s i s t o r s  T1 - T4) i s  1.5 X 10 and t h e  maximum amplifica
t i o n  f a c t o r  of t he  e n t i r e  anrplifier reaches 3 X lo” at  a frequency of -!& cps 
(Bibl.30). After t h e  amplification, t h e  s igna l  i s  conveyed t o  t h e  full-wave 

Uout  

Fig.12.X Measuring Ci rcu i t  of a Radiometer Channel. 

r e c t i f i e r  R assembled from t h e  germanium diodes I& - D5 (of t h e  1 N 5 8 A  type),  
which a t  t h e  same time i s  supplied with t h e  voltage passing across t h e  phase-
inversion s tage  based on t h e  t r a n s i s t o r  T7 ( a 5 4 3  type) (common-emitter ampl i 
f i e r  c i r c u i t ) .  Owing t o  in t ra -s tage  feedback, i t s  ampl i f ica t ion  f a c t o r  i s  
roughly unity. T h i s  assures  t h e  doubling of t h e  r e c t i f i e d  voltage of t h e  s igna l  
which i s  taken off t h e  smoothing RC f i l t e r  wi th  a grounded c e n t r a l  po in t .  The 
l a t t e r  serves t o  minimize noise and t o  reduce t h e  var iab le  component with fre
quencies of more than 5 - 8 cps which may adversely a f f e c t  t h e  recording of t h e  
da t a  on magnetic tape.  

The l e v e l s  and ampl i f ica t ion  of t h e  s igna l s  are such t h a t  accuracy i s  
l imi ted  not by the  noise but by t h e  p o s s i b i l i t i e s  of t h e  telemetering system and 
t h e  d r i f t  due t o  temperature f luc tua t ions .  The s igna l  equivalent t o  noise f o r  
channel 1i s  obtained i n  t h e  presence of a f lux  with t h e  dens i ty  1.5 X lo-’ w/cm2; 
and f o r  t h e  o ther  channels, i n  t h e  presence of a f lux with t h e  dens i ty  4.5 X 

X lo-’ w/cm2 (Bib1.27). 

The incomplete compensation of t h e  e f f e c t  of temperature on t h e  bolometer, 
t he  d i f fe rences  i n  t h e  temperatures of various s i d e s  of t h e  prism as w e l l  as i n  
the  temperature along t h e  surface of t h e  in t e r rup to rc re f l ec to r ,  and o ther  ef
f e c t s ,  cause t h e  instrument readings t o  be temperature-dependent. I n  t h e  range 
of  working temperatures of from 0 - 4 5 O C  this l eads  t o  an e r r o r  reaching *lo%. 
To make allowance f o r  this e f f ec t ,  t h e  temperature of t h e  instrument housing was  
measured and telemetered along with t h e  output s igna l .  

A constant output voltage U o u t  i s  strpplied t o  t h e  controlled generator CG. 
Signals from a l l  of t h e  channels are added toge ther  i n  t h e  recording device RD 
and recorded on magnetic tape .  The recording of t h e  radiometer s igna l s  was per
formed over t h e  frequency range of from 100 t o  410 cps at  t h e  rate of 10 mm/sec, 
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and t h e i r  reproduction a t  t h e  rate of 300 mm/sec (Bibl.19). The voltage-con
t r o l l e d  generator of channel 1operates i n  t h e  100 - 150 cps frequency range; /266 
t h e  generator of channel 2 i n  t h e  165 - 215 cps frequency range, and so on, w i t h  
t h e  frequency range f o r  each successive channel s h i f t i n g  qward by 50 cps with 
i n t e r v a l s  of 1 5  cps between t h e  channels. 

The o v e r a l l  dimensions of t h e  five-channel radiometer a r e  150 x 1 1 5  x 
x 115 mm i t s  weight i s  about 2 kg and i t s  power requirement i s  about l w  
(Bib1.271. 

The c i r c u i t  diagrams of t h e  measuring RT and t h e  compensation R, bolometers 
a r e  t h e  same f o r  each channel (Fig.12.X). The output s igna l  U o u t  of t h e  radio
meter channel i s  propor t iona l  t o  t h e  va r i ab le  component A@ of t h e  r ad ia t ive  f l u x  
a r r iv ing  at t h e  measuring bolometer of t h e  channel, 

where K i s  t h e  c i r c u i t  t r a n s f e r  coe f f i c i en t  and S i s  t h e  v o l t  s e n s i t i v i t y  of t h e  
bolometer. 

The var iab le  component A@ equals t h e  d i f fe rence  between t h e  r ad ia t ive  
f l u e s  a r r iv ing  at  t h e  receptor i n  t h e  presence of two opposite pos i t i ons  of t h e  
r e f l ec to r .  The magnitude of t h e  f lux (@, + &), a r r i v i n g  a t  t h e  bolometer i n  
t h e  f irst  p o s i t i o n  of t h e  modulator (shown i n  Fig.ll.X), taking i n t o  account t h e  
r ad ia t ive  cont r ibu t ion  of a l l  t h e  elements of t h e  o p t i c a l  system, i s  as follows: 

( 28 .X) 

where cp, ,  cb,, e , , ,  and eo, a r e  t h e  s p e c t r a l  emis s iv i t i e s  of t h e  s ides  of t h e  
prism, p a r t s  of t h e  modulator (black and specular),  and t h e  o p t i c a l  system, re
spectively,  ' 9 , ~  and @,, are t h e  s p e c t r a l  d e n s i t i e s  of t h e  r ad ia t ive  f luxes  a t  
t he  input  i n  d i r ec t ions  A and B, respectively,  ha - h2 i s  t h e  s p e c t r a l  range of 
t h e  concerned f i l t e r  channel, p p , ,  Pb,, p m 1  are t h e  s p e c t r a l  r e f l e c t i o n  coeffi
c i en t s  of t h e  s ides  of t h e  prism and of t h e  blackened and mirror halves of t h e  
modulator-reflector, p, i s  t h e  s p e c t r a l  t ransmiss iv i ty  of t h e  o p t i c a l  system, 
h7. i s  Planck's func t ion  giving t h e  s p e c t r a l  i n t e n s i t y  of r ad ia t ion  i n  r e l a t i o n  
t o  t h e  temperature of prism Tp ,  t h e  temperature of t h e  modulator T, and t h e  t e m 
pera ture  of t h e  o p t i c a l  s y s t e m  TO. 

Similarly,  f o r  a s ing le  counter-directed p o s i t i o n  of t h e  modulator-reflector 
we have 

A2 

( @ A  f@ B ) 2  = [ @ A  App. APb. APA +@ B  App Lpm.APA + 
11 (29.XI 

+ Ep. Ark TP (pb. A fPm.A) PA + (Eb.L + �,.A) x f A  T,,, PA + Eo. T ~ ]dli. 
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The formula f o r  t h e  var iab le  component A@ of t h e  f lux a r r iv ing  at t h e  /267
bolometer, assuming t h a t  t h e  s ides  of t h e  prism have i d e n t i c a l  o p t i c a l  p rope r t i e s  
and t h e  temperature of a l l  t he  elements of t he  op t i c s  i s  the  same throughout t h e  
cycle of measurements, i s  as follows: 

For f ixed  parameters of t he  op t i c s  (e, P and P) ,  t h e  channel output voltage 
i s  determined by t h e  d i f fe rence  between t h e  r ad ia t ive  fluxes, inc ident  on t h e  
instrument i n  d i r ec t ions  A and B, 

where cp(h) i s  a quantity character iz ing t h e  spec t r a l  s e n s i t i v i t y  of t h e  op t i c s  
of t h e  concerned channel. 

The thermal channels of t h e  radiometer (1,2, and 4.)were ca l ibra ted  with 
the  a i d  of two blackbodies (Bibl.19). One of these,  simulating t h e  r ad ia t ion  
of ou ter  space, was  maintained at t h e  temperature of l i q u i d  ni t rogen Tl. The 
temperature T2 of t h e  o ther  blackbody, simulating t h e  r ad ia t ion  of t h e  earth-
atmosphere system, was  var ied.  To eliminate t h e  e r r o r s  due t o  water-vapor con
densation and t o  rad ian t  energy absorption, t he  ca l ib ra t ion  was performed i n  a 
dry ni t rogen atmosphere. 

The s igna l  at t h e  output of a given channel i s  determined by t h e  blackbody 
temperature T2 i n  accordance with eq.(31.X), where t h e  quan t i t i e s  G A 1  and @,A 
a r e  subs t i tu ted  by t h e  s p e c t r a l  r ad ia t ion  i n t e n s i t i e s  qTl and qT of an abso
l u t e l y  black body. The thermal channels 3 and 5, which encompass t%e v i s i b l e  
por t ion  of t he  spectrum, were ca l ibra ted  by t h e  standard method ( c f .  Sect.2). 
The standard source used was a tungsten fi lament lamp (laminated type). 

I n  addi t ion,  a l l  t h e  thermal channels of t h e  radiometer w e r e  ca l ibra ted  i n  
t h e  presence of d i f f e r e n t  ambient temperatures T, and a f ixed  magnitude or' radi
a t i v e  f luxes  a t  t h e  input .  T h i s  made it poss ib le  t o  p l o t  curves of t h e  type 
U O U t  = f (Ta ) ,  which were used t o  introduce correct ions f o r  t h e  temperature of 
the  radiometer housing. The ca l ib ra t ion  procedure f o r  channel 4, measuring t h e  
i n t e g r a l  longwave rad ia t ion ,  i s  shown i n  Fig.13.X where 1 and 2 are ca l ib ra t ion  
curves a t  t h e  housing temperature of 2 T o C ,  with a blackbody of var iab le  tempera
t u r e  mounted i n  f r o n t  of t h e  inlets A and B; 3 i s  tho" c a l i b r a t i o n  curve as i n  
case 1 but f o r  a housing having a temperature of -45 C .  

Tiros-series satell i tes have a s p a t i a l l y  s t a b i l i z e d  s p i n  axis  and are 
lobbed i n t o  near-circular  o r b i t s  3 (Fig.l.4.X). A five-channel radiometer i s  /268 
i n s t a l l e d  i n  t h e  lower base of t h e  satel l i te  near one of t h e  s ides  i n  such a 
manner t h a t  i n  one pos i t i on  t h e  ear th ' s  surface i s  viewed through t h e  Window i n  
t h e  bottom and i n  t h e  opposite pos i t ion ,  through t h e  Window i n  the  s ide.  A s  t h e  
s a t e l l i t e  spins  ( a t  t h e  rate of about 10 rpm), t h e  o p t i c a l  ax is  of t h e  radio
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meter describes a cone about t h e  a x i s  of r o t a t i o n  of t h e  satellite, with a 90' 
angle of taper .  T h i s  i s  accompanied by scanning over t h e  curve 2 or 2' on t h e  
ear th ' s  surface.  The mean e r r o r  i n  determining t h e  e f f e c t i v e  temperature, 

Fig.13.X Cal ibra t ion  Graphs of t h e  Radiometer Channels. 

accordin t o  t h e  da t a  of channels 1 and 2, has been estimated by t h e  authors 
(Bibl.23 P at not more or less than f%, and t h e  m a d m u m  e r r o r  i n  determining t h e  
absolute values, a t  not more or less than &5%. 

Fig.Z.X Scanning Bands of t h e  Radiometers Mounted 
i n  t h e  Tiros S a t e l l i t e .  

An improvement on this instrument i s  t h e  two-channel radiometer i n s t a l l e d  
i n  t h e  Mariner I1 space s t a t ion ,  with t h e  ob jec t  of measuring t h e  temperature of 
t h e  cloud cover of Venus as well as t h e  temperature of i t s  surface i n  t h e  pre
sence of windows i n  t h e  clouds (Bibl.31). I n  t h i s  device, t h e  r ad ia t ion  from 
t h e  p l ane t  and from ou te r  space O S  i s  a l t e r n a t e l y  focused by t h e  lenses  L1 and 
La (Fig.15.X) onto channels A (8.5 p)and B (10.4 P), in te r rupted  by means of /269 
t h e  mirror modulator M with a frequency of 20 cps. The p lane  mirror M1 and t h e  



dichro ic  mirror M2 serve t o  a l ter  t h e  d i r e c t i o n  of t h e  fluxes. The viewing 
angle of t h e  channels i s  approximately 1.2 X 1.2' (Bib1.32). The de tec to r s  of 
t h e  r ad ia t ive  f luxes  i n  both s p e c t r a l  ranges, i s o l a t e d  by means of f i l t e r s  f i  
and f 2 ,  are thermistor bolometers of t h e  immersion type. The f i e l d  of v i e w  of 
t h e  lenses  i s  such t h a t  t h e  surface of Venus w i l l  occupy it during t r a n s i t  of 
t h e  Mariner a t  a d i s t ance  of 34,000 km from this p lane t .  

4 

Te 1 eme t e r  i n g  
System 

Tel  cmet cr  i n g  
system 

Te 1 eme t e  r i n g  
s y s t e m  

Fig.15.X Diagram of Two-Channel Radiometer. 
1and 1' - Preamplifiers of channels A and B; 2 and 2' - Loga

rithmic generators;  3 and 3' - Logarithmic amplifiers;
4 and 4' - Synchronous de t ec to r s ;  5 and 5' - Output devices; 

6 and 6' - Calibration c i r c u i t s ;  7 - Amplifier of t h e  
reference voltage; 8 - Receptor power pack; 9 - Temperature 

p i c k w ;  10 - Amplifier of t h e  bridge unbalance. 

The e l e c t r i c a l  c i r c u i t s  of both channels are i d e n t i c a l .  They include a 
t r a n s i s t o r i z e d  preampl i f ie r  of t h e  same design as t h a t  of t h e  five-channel 
radiometer (transmission band 1.7 cps, voltage ampl i f ica t ion  f a c t o r  07.2 X lo"), 
a logarithmic ampl i f ie r  f o r  reducing t h e  dynamic range ( t o  200 - 600 K) ,  a syn
chronous de t ec to r  with a f i l t e r  and an output matching t h e  amplifier. 

The reference voltage supplied t o  t h e  synchronous de tec tor ,  which i s  used 
t o  a t t a i n  a high signal-to-noise r a t i o ,  i s  produced by t h e  photosensor PS and 
amplified by a spec ia l  amplifier. A s p e c i a l  c a l i b r a t i o n  c i r c u i t  serves t o  check 
t h e  performance of t h e  synchronous de tec tor .  The s e n s i t i v i t y  of t h e  radiometer 
i s  -2" f o r  a t i m e  constant of 3 sec (Bib1.32). 

The ca l ib ra t ion  of t h e  radiometer i s  v e r i f i e d  by pe r iod ica l ly  covering i t s  
f i e l d  of v i e w  with a c a l i b r a t i o n  p l a t e .  The temperature of this p la t e ,  as /27(!
w e l l  as t h e  temperature of t h e  instrument housing i s  measured with t h e  a i d  of 
pickups whose readings are, after amplification, t ransmi t ted  t o  t h e  telemetering 
system (Fig .15.X) . 

The t o t a l  weight of t h e  instrument i s  1.3 kg; t h e  dimensions are 13 X l-4 X 
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x 10 cm, t h e  power requirement i s  2.4 w (Bib1.32). For both radiometer types 
considered above, t h e  same methods of c a l i b r a t i o n  and d a t a  processing are used. 
In  t h e  l a t te r  experiment it was f e a s i b l e  t o  determine t h e  COa content of t h e  
p l ane t ' s  atmosphere (by comparing t h e  r a d i a t i o n  i n  t h e  -10.4 p COz band and i n  
t h e  8.4 p window). 

Section 4. Actinometric Instruments 

The most s u i t a b l e  devices f o r  actinometric measurements, i n  which t h e  in
t e g r a l  fluxes of t h e  rad ian t  energy must be determined c h i e f l y  i n  t h e  0.2 - 40 p 
s p e c t r a l  range, are nonselective heat receptors.  

I n  instruments i n  which considerable i n e r t i a  i s  permissible (up t o  severa l  
t e n s  of milliseconds), t h e  receptors employed are r a d i a t i o n  thermoelements dis
playing a s e n s i t i v i t y  near ly  one order of magnitude g r e a t e r  than t h a t  of t h e  
modern bolometers (Bibl.16). The i n e r t i a  of t h e  receptor  leads,  however, re
sults i n  averaging t h e  measured f luxes .  

To estimate t h e  threshold f l u x  recorded by t h e  thermoelement, we w i l l  assume 
t h a t  t h e r e  exists only t h e  i n f l u x  of heat via t h e  e lec t rodes  forming t h e  thermo
couple and t h a t  t h e  r e s i s t ance  of t h e  l eads  i s  small. I n  this case, t h e  change 
AU, i n  t h e  receptor s i g n a l  due t o  t h e  change A F C  i n  t h e  temperature of t h e  
working junction owing t o  t h e  absorption of r a d i a t i v e  f l u x  A @ ,  will b e  

where S i s  thermo-e.m.f.; a i s  t h e  coe f f i c i en t  of t h e  absorption of rad ian t  
energy by t h e  black coating of t h e  junc t ion  or of t h e  f o i l  t o  which t h e  junction 
i s  attached; w i s  a coe f f i c i en t  which takes  i n t o  account t h e  energy lo s ses  due 
t o  t h e  heat conduction of t h e  thermocouple and t h e  r a d i a t i v e  heat t r a n s f e r .  

The thermocouple noise, assuming t h a t  t h e  amplifier noise and t h e  induction 
noise are negl ig ib ly  small, i s  v i r t u a l l y  determined by t h e  thermal noise of t h e  
ohmic r e s i s t ance  ELLh of t h e  thermocouple, bu t  t h e  determination of t h e  l a t t e r  
must t ake  i n t o  account t h e  P e l t i e r  e f f e c t .  T h i s  e f f e c t  causes cooling of t h e  * 
heated thermocouple junction and t h e  occurrence of a counter-directed e.m.f. 
To take  i n t o  account t h e  P e l t i e r  e f f e c t ,  t h e  dynanic r e s i s t ance  F&, whose magni
tude, according t o  Moss (Bibl . l6) ,  i s  

R d  =-S2T 0.1R t h .  (33.XI 
x 

i s  added t o  t h e  thermocouple r e s i s t ance  R t h .  

Thus, t h e  mean square of t h e  voltage of t h e  thermal noise of t h e  thermo- /271 
couple, as determined from Nyquist's equation, w i l l  be 

AT=4kT (Rt& R d )  Av. (34.1) 
The threshold flux with t h e  f a c t o r  of assurance c wil l  be 



Note t h a t  f o r  an i d e a l l y  designed thermoelement, i n  which the re  i s  no heat 
flow through t h e  electrodes,  we have H = (where A i s  the area of t h e  
s e n s i t i v e  surface of t h e  thermoelement). I n  this case, f o r  T = 290°K, A = 2 x 
x 0.2 mm2 and Av = 1cps, c = 1 CY = 1, S = 5 x v/deg and Rth + Rd = 
= 200 ohm, we have @f = 2 x lo-" watt. 

B.P.Kozyrev (Bibl.4) has developed multiple- junction thermopiles designed 
t o  measure powerful f l uxes  of na tu ra l  r a d i a t i o n  of t h e  e a r t h  or d i r e c t  r a d i a t i o n  
of t h e  sun (from 0.07 w/cm2 t o  0 . a  w/cm2) over a wide s o l i d  angle (-ZIT). 

The 0.3 - 2.5 and 2.5 - 40 P s p e c t r a l  s e n s i t i v i t y  ranges of t hese  thermo
p i l e s  are i s o l a t e d  by means of a set of coatings of t h e  s e n s i t i v e  surfaces and 
f i l t e r s  i n  t h e  form of a semispherical i n l e t  window. Within these  s p e c t r a l  

The time constant of t h eranges, t he  thermopiles are v i r t u a l l y  nonselective. 

16- junc t ion recep to r s i s  - 2.5 sec and t h e  area of t h e  s e n s i t i v e  surface i s  2 x 

x 3 mm. 

The receptor-calibration e r r o r  (with respect t o  a sphe r i ca l  blackbody and 
an incandescent lamp with a sapphire window) i s  estimated a t  not more or less 
than  &3%. 

I n  v i e w  of t h e  considerable magnitude of t h e  measured f luxes  ( c f .  Sect.1 
of this Chapter), t h e  actinometric instrument i s  based on thermal methods of 
radiant-energy measurement, w i t h  t h e  temperature of t h e  s e n s i t i v e  surfaces 
serving as t h e  measured quantity. To separa te  t h e  f luxes  of s o l a r  and longwave 

The blackradia t ion ,  t h e  sensors usua l ly  are coated with a black or w h i t e  dye. 
coating absorbs and emits r ad ia t ive  fluxes almost equally w e l l  over t h e  s p e c t r a l  
range considered, w h i l e  t h e  w h i t e  coating v i r t u a l l y  does not absorb shortwave 
rad ian t  energy (approximately from 0.2 t o  4 p) ,  but behaves i n  the  longwave 
region i n  roughly t h e  same manner as t h e  black coating. 

To determine t h e  radiative f luxes  composing t h e  r ad ia t ion  balance, or t o  
d i r e c t l y  determine t h e  r ad ia t ion  balance, t h e  equation of t h e  heat balance of 
t h e  receptor i s  solved. The terms of this equation are, i n  t h e  general  case: 

a) The heat i n f l u x  due t o  absorption of shortwave and longwave rad ian t  /272 
energy, whose d e n s i t i e s  i n  t h e  neighborhood of t h e  receptor  will be denoted by 
F, and Ft, respectively,  w h i l e  t he  areas of t h e  receptor  s e n s i t i v e  t o  each type  
of rad ian t  energy w i l l  be denoted correspondingly by al and a2: 

b)  t o  t h e  heat i n f l u x  due t o  r a d i a t i v e  heat exchange between t h e  concerned 
receptor  area a3 wi th  temperature T and t h e  container sur face  "visible" t o  it 
and having t h e  temperature T4 as w e l l  as t h e  same emissivity e ;  

c )  t o  t h e  heat i n f l u x  from i n t e r n a l  sources, and i n  p a r t i c u l a r  owing t o  t h e  
heating of t h e  e l ec t ron  thermometer by cur ren t  i which flows across it i n  t h e  
measuring c i r c u i t  ; 
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d) t o  t h e  heat i n f l u x  from t h e  receptor-fastening system, which i s  taken 
i n t o  account by introducing t h e  equivalent coe f f i c i en t  of heat conduction x and 
cross  sec t iona l  area a of this system; 

e) t o  t h e  heat l o s s e s  due t o  na tu ra l  r a d i a t i o n  from the  e f f e c t i v e  sur face  
a4 of t h e  receptor i n  t h e  presence of t h e  emission c o e f f i c i e n t  e .  

If, owing t o  t h e  a c t i o n  of t hese  heat f luxes ,  over t h e  t i m e  A t ,  t h e  tem
pe ra tu re  of t h e  receptor  changes by AT, t h e  change i n  i t s  enthalpy ( c f .  Sect.1, 
Chapt.111) w i l l  be 

mcAT = [ a F , a i + ~ F ~ a ~ + 4 & a ? ~( T I - T )  a3-k 
+0.24i2R+xo (T i  -T )  -&akoP]At ,  (36 0x1 

where m i s  the  m a s s  of t h e  receptor;  c-is i t s  s p e c i f i c  heat;  CY and e are t h e  
absorption and emission coe f f i c i en t s ;  T i s  t h e  mean temperature determined from 
t h e  condition Tf - r' = 4T3(T1 - T);  and R i s  t h e  r e s i s t ance  of t h e  receptor.  

The equation of t h e  heat balance obtained above [eq.(36.X)3 i s  rewr i t ten  as 
follows i n  t h e  event t h a t  t h e  design i s  modified t o  assure t h e  equal i ty  of a l l  
of t h e  e f f e c t i v e  areas a l  = a2 = a3 = a4: 

aF,  +EFJ-&uTb+4&0T3( T i  -T )  + 
AT+Hif2+H2 ( T i - T )  -q -=O,At  

where HI and H2 are coe f f i c i en t s  determining t h e  heat i n f l u x  due t o  t h e  passage 
of current across  t h e  receptor and t h e  heat conduction of t h e  receptor 's  

system; 7 i s  t h e  coe f f i c i en t  charac te r iz ing  t h e  receptor 's  thermal  
c f .  Sect .l, Chapt .III). 

The equation (36.X) of t h e  heat balance of t h e  receptor implies t h a t  i t  i s  
fundamentally poss ib l e  t o  employ both s t a t i c  (on condition t h a t  A t  '-. 0) and 
dynamic thermal methods f o r  measuring t h e  i n t e g r a l  f luxes  of t h e  rad ian t  energy. 
I n  t h e  l a t te r  case, however, it would be necessary t o  record t h e  na ture  of t h e  
rate of v a r i a t i o n  i n  t h e  receptor temperature A T / A t ,  which involves considerable 
technica l  d i f f i c u l t i e s .  /273 

I n  s t a t i c  measurements it i s  poss ib le  t o  employ e i t h e r  t h e  thennometric or 
t h e  compensation method. In  t h e  la t ter  case, t h e  absorption of r ad ian t  energy 
by t h e  receptor i s  compensated by t h e  passage of cur ren t  i,. Even this method, 
however, i s  t echn ica l ly  d i f f i c u l t  t o  apply t o  t e l eme t r i c  measurements, although
it has t h e  advantages of t h e  d i f fe ren t ia l -zero  measurement p r inc ip l e  ( c f  . Sect .2 
of this Chapter). 

When employing t h e  thermometric measurement method, t h e  receptor design 
must be such t h a t  a l l  of t h e  heat fluxes o the r  than t h e  i n f l u x  due t o  t h e  ab
sorp t ion  of rad ian t  energy would be of a m i n i m a l  magnitude. 

To determine the  f l u x  $4 of longwave radiant energy on t h e  p lane t ' s  dark 



side,  it i s  su f f i c i en t  t o  measure t h e  temperature of any (black or white) re
ceptor, s ince i n  this case t h e  terms of t h e  balance containing shortwave g, are 
absent. To determine t h e  fluxes and Q, on t h e  i l l d n a t e d  s i d e  of t h e  
planet ,  it i s  necessary t o  measure t h e  temperatures of t h e  black and w h i t e  re-

'ceptors and t o  solve j o i n t l y  t h e  obtained equations of t h e  balance ( t h e  values 
of a l l  of t h e  parameters enter ing i n t o  these  equations must be determined during 
laboratory tests of t h e  instrument) . 

The parameters of t h e  instrumentts o p t i c a l  system may be estimated from 
equations derived earlier (c f .  Sect.3 of this Chapter), considering t h a t  t h e  
i n t e g r a l  rad ia t ion  flux of a body with t h e  temperature T e a r t h  i n t o  t h e  half-
sphere i s  

m 

eiriTa dA = 4 

0 

where a i s  the  rad ia t ion  constant. 

Calculations show t ta t  a 0 . 0 1 ~var i a t ion  of t h e  f l u x  at  t h e  angle IT radian 
causes a var ia t ion  of -1 C i n  temperature (exclusive of t h e  o p t i c a l  system). 
Various actinometric devices are used on a fairly broad sca l e  i n  meteorological 
s tud ies  performed with the  a i d  of rockets  and satelEtes i n  t h e  USSR (Bibl.4, 
8, 12) as w e l l  as i n  the  United States (Bibl.10. 13, 19, 20). 

One of t h e  first of these  devices was t h e  thermometric-type instrument de
signed t o  measure t h e  rad ia t ion  balance from t h e  Fkplorer VI1 satell i te (13 Oct,
1959) by means of wide-angle receptors designed i n  t h e  form of half-spheres 
with various coatings and attached on insu la t ing  supports i n  the  neighborhood
of mirrors reducing t h e  e f f e c t  produced by t h e  r ad ia t ion  from t h e  surface of t h e  
instrument housing. The temperature of t h e  half-spheres and mirrors was measured 
by thermistors (Bibl.13, 19) .  

Actinometric measurements by means of Soviet upper-air op t i ca l  probes 
have been car r ied  out by means of net radiometers or t o t a l  rad ia t ion  pickups 

/274. 
(TRP) . In  these instruments, film-type thermoelements with black-and-white 
coatings were attached i n  t h e  shear plane of a massive copper cup with a 
blackened inner  surface. The cup temperature and i t s  d i f fe rence  from t h e  junc
t i o n  temperatures were measured (Bibl.8) . 

The Tiros-series satel l i tes  employ a two-channel wide-angle radiometer t o  
determine the  components of t h e  rad ia t ion  balance of t h e  earth-atmosphere 
system. 

The receptors of r ad ia t ive  f luxes  i n  this instrument (F'ig.16.X) are t h e d s 
t o r s  with black 1and w h i t e  2 coatings attached t o  t h e  tops  of cone-shaped 
aluminized r e f l e c t o r s  4 which assure a roughly f ive fo ld  a p t i c a l  amplif icat ion 
(Bib1.27). To reduce t h e  flow of heat through t h e  thermometer fas tening system, 
the  cones are constructed of t h i n  insu la t ing  (Mylar) f i l m  and t h e  receptor  i s  
attached by means of a f i n e  synthet ic  fi lament.  The reverse s i d e  of t h e  re
ceptor i s  coated with gold, having a r ad ia t ion  f a c t o r  such that t h e  lo s ses  due 
t o  heat conduction and r ad ia t ive  heat exchange with l i d  7 are roughly compen
sated.  The angle of t ape r  of t h e  cones i s  -50'. The thermoreceptors have a 
diameter of 5 m and a thickness  of 0.01 nun (Bib1.27). To compensate f o r  t h e  
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e f f e c t  of ambient temperature on t h e  thermistor readings, t h e  r e s i s t o r s  5 w i t h  
a p o s i t i v e  temperature coe f f i c i en t  of r e s i s t ance  are connected t o  t h e  c i r c u i t  
p a r a l l e l  t o  t h e  thermistors.  

Fig.16.X Diagram of t h e  Sens i t ive  Pa r t  of a 
Wide-Angle Radiometer. 

Considering t h a t  this instrument does not i d e a l l y  eliminate t h e  e f f e c t  of 
t h e  heat fluxes t o  d i s t o r t  t h e  measurements, t he  temperature of t h e  instrument 
housing i s  measured by t h e  thermis tor  3 attached between t h e  bases of t h e  

% 
too r 

Wave 1 en g t h 

F’ig.17.X Spec t r a l  Charac te r i s t ics  of Receptor Coatings. 

housing 4. The output impedance of t h e  receptors  wi th in  t h e  range of t h e  
measured r ad ia t ive  fluxes va r i e s  from 300 t o  1500 ohm (Bib1.27). The voltage 
drop on t h e  receptors i s  conveyed via a commutator t o  a controlled generator /275 
whose frequency then varies wi th in  t h e  limits of425-485cps(Bibl.l9). The 
s igna l  produced by t h e  generator arrives at  t h e  recording system. Note t h a t  t h e  
same system with a commutator i s  used for measuring t h e  temperature of o ther  
elements of t h e  satel l i te  and p a r t i c u l a r l y  of t h e  housing of t h e  five-channel 
radiometer, and a l s o  f o r  t ransmi t t ing  t h e  voltage-calibration s igna l s  (Bibl.19). 

The s p e c t r a l  c h a r a c t e r i s t i c s  (Fig.17 .X) of t h e  w h i t e  and black coatings 
(and p a r t i c u l a r l y  of t h e  w h i t e  coating i n  t h e  region of -4. p)  d i f f e r  markedly 
from t h e  i d e a l .  I n  this connection, t h e  thermistor teniperature i s  not equal t o  
t h e  t r u e  temperature of t h e  ear th .  The presence of d i s t o r t i n g  f luxes  d i s tu rbs  
t h e  r ad ia t ive  equilibrium between t h e  receptor and t h e  sec to r  of t h e  emitting 
surface present  i n  t h e  f i e l d  of View of t h e  o p t i c a l  system. To determine t h e  
dens i ty  of t h e  radiative fluxes sensed by t h e  thermistors,  i t  i s  necessary t o  
employ an  equation of heat balance of t h e  eq.(36.X) type. 



The primary processing of t h e  results of t h e  measurements involves t h e  
so lu t ion  of a simplified equation which, f o r  night measurements, i s  wr i t t en  as 

(39 .x) 
where  I, i s  t h e  i n t e n s i t y  of t h e  measured longwave r ad ia t ion  and w i s  t h e  f ixed  
viewing angle of t h e  instrument. 

w i s  determined according t o  t h e  angular c h a r a c t e r i s t i c s  of t h e  in s t ru 
ment's f i e l d  of View (Fig.18.X). Taking i n t o  account t h e  ha l f - in tens i ty  s igna l ,  
t h e  viewing an l e  roughly corresponds t o  t h e  angle of t a p e r  of t h e  cone-shaped 
r e f l e c t o r s .  ( 50E ) . 

The c a l i b r a t i o n  of t h e  radiometer was conducted i n  a vacuum mm Hg);
it was then attached t o  a m e t a l  frame simulating t h e  satel l i te  (Bibl.19). The 
frame temperature was varied i n  s tages  from -10 t o  +6OoC. The temperature of 
t h e  blackbody simulating t h e  ea r th ' s  r a d i a t i o n  was  varied wi th in  limits of from 
-130 t o  +6OoC. A quartz-window incandescent lamp was used t o  simulate solar 
rad ia t ion .  

O f  I7. t a p e r-
0 
.. 60 - 40 

Angular  d i s t a n c e  f rom a x i s  

Fig.18.X Angular Charac te r i s t ics  of t h e  F ie ld  of View 
of a Wide-Angle Radiometer. 

Calibration curves of t he  blackened thermistor f o r  various temperatures of 
t h e  housing are shown i n  Fig.ly.X, where equivalent e a r t h  temperatures are 
spec i f ied  i n  l i e u  of blackbody temperatures. The broken l i n e  t r a c e s  t h e  i d e a l  
curve t h a t  would have been obtained as a r e s u l t  of c a l i b r a t i o n  f o r  any tempera
ture of t h e  housing, i f  t h e  heat i n s u l a t i o n  had been p e r f e c t  and t h e  emissivi
ties of t h e  thermometer and of t h e  e a r t h  had been equal t o  unity.  The graph i n  
Fig.19 .X i s  used f o r  t h e  primary processing of observational f indings.  

The two-channel radiometer i s  mounted i n  t h e  c e n t r a l  p a r t  of t h e  satel l i te  
bottom i n  such a manner t h a t  t h e  o p t i c a l  axes of both channels are v i r t u a l l y  /276 
p a r a l l e l  t o  t h e  a x i s  of sp in  ( c f .  Fig.l.!+.X). 

On upper-air automatic geophysical probes, outgoing r a d i a t i o n  within t h e  
0.5 - 4.0 p s p e c t r a l  range was measured by means of scanning teleradiometers with 
a bolometric receptor (Bibl.1). These instruments are based on t h e  double-beam 
scheme (Fig.20.X). The thermal r ad ia t ion  of t h e  e a r t h  i s  sensed through one 



channel (scanning o p t i c a l  head l), w h i l e  t h e  reference r ad ia t ion  of ou te r  space 
i s  sensed through t h e  o the r  channel ( f ixed  head 2). Both receptors have t h e  

Recep t o r  r e s  is tance 
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I , , I , , , 

Recep t o r  t enp e r  a t u r  e 

Fig.19.X Cal ibra t ion  Curves of t h e  Blackened Thermistor 
f o r  Various Housing Temperatures. 

same mirror lenses  with t h e  r e l a t i v e  aper ture  l:4. I n  order t o  employ t h e  
variable-voltage amplifier 5, t h e  fluxes are modulated w i t h  a frequency of 
80 cps. I n  order t o  exclude t h e  n a t u r a l  r ad ia t ion  of t h e  modulator, t h e  c i r c u i t  

I 


5 6 


c
b 

F’ig.20.X Block Diagram of t h e  Instrument f o r  Measuring 
Thermal Radiation: 

1- Optical scanning head; 2 - Opt ica l  z e r w s i g n a l  head; 
3 - Bolometers; 4- - Scanning mechanism; 5 -p Amplifier;

6 - Telemetering system; 7 - Motor supply source; 
8 - S a t e l l i t e  command system; 9 - Power pack. 

of t h e  bolometers 3 i s  of t h e  d i f f e r e n t i a l  type. A s  a result, t h e  instrument 
produces t h e  s i g n a l  U o u t  p ropor t iona l  t o  t h e  d i f f e rence  i n  t h e  i n t e n s i t i e s  Larth 
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and I&. of t h e  r ad ia t ive  fluxes incident  on t h e  instrument from t h e  ea r th  and 
from outer  space: 

where K i s  a coef f ic ien t  which depends on t h e  r e f l ec t ion  of t h e  mirrors, on t h e  
proper t ies  of t h e  bolometers, and on t h e  amplif icat ion of t h e  s igna l  within t h e  
c i r c u i t .  

The op t i ca l  axis of l ens  1i s  actuated by being dr iven from t h e  motor of 
t h e  modulaior 4. It alters i t s  d i r ec t ion  within t h e  limits of t h e  scanning 
angle (180 ). The scanning rate i s  6' p e r  sec. The extreme pos i t ions  of /277 
t h e  scanning l ens  are recorded by sending pulses  t o  t h e  telemetering s y s t e m .  

The sens i t i ve  area of t h e  bolometers measures 3 mm2, t h e i r  s e n s i t i v i t y  S i n  
t h e  bridge c i r c u i t  diagram i s  1 5  v/w, and t h e  time constant 7 i s  5 msec. Their 
spec t r a l  s e n s i t i v i t y  i s  uniform throughout t h e  1- 40 CL range (Bibl.1). A t  a 
frequency of v, = 80 cps, t h e  s e n s i t i v i t y  threshold 9, of t h e  instrument i s  
io-' w/cps f o r  a viewing angle of -1". 

Note t h a t  i n  ce r t a in  var ian ts  of this instrument t h e  s o l a r  rad ia t ion  ( A  < 
< 2.5 p )  was cu t  off by means of f i l t e rs  (Bibl.12). 

The t o t a l 6  voltage amplif icat ion f a c t o r  of t h e  se l ec t ive  five-stage ampl i 
f i e r  5 was  -10 and t h e  equivalent noise width of t h e  frequency passband Av = 
= 4.0 cps. The amplified s igna l  was detected and averaged by an RC f i l t e r .  The 
time constant of this f i l t e r ,  which determines the  t o t a l  i n e r t i a  6f t h e  ins t ru
ment, was 0.4 - 0.5 sec f o r  t h e  var ian t  considered here (Bibl.1). Sens i t i v i ty  
of t he  instrument was  checked during i t s  operation by means of a per iodica l ly  
energized incandescent lamp incorporated i n  i t s  design. This l a q  was powered 
from a separate  source. 

The t o t a l  ca l ib ra t ion  e r r o r  f o r  t h e  obtained ca l ib ra t ion  by means of two 
blackbodies was estimated by t h e  authors (Bibl.1) as 2 - 3%, and t h e  t o t a l  
measurement e r ro r ,  due t o  t h e  presence of electromagnetic induction a t  t h e  in
strument output, reached *15% and +20%. 

--~~ ...Section 5. Spectral  ~ Instruments /278 
I n  spec t r a l  instruments designed t o  operate i n  t h e  v i s i b l e  and in f r a red  

regions of t h e  spec t rm,  both prisms and d i f f r a c t i o n  gra t ings  are used as dis
pers ion elements. The gra t ings  display a higher resolving power and hence they 
are used more often.  In  t h e  far-IR region, r e f l e c t i o n  gra t ings  and monochro
mators of t h e  l ens l e s s  type are employed, but, as was pointed out earlier ( c f .  
Sect.5, Chapt.IX), then  s t eps  must be taken t o  reduce astigmatism. The gra t ing  
as w e l l  as t h e  entrance sl i t  and receptor  are mounted on a Rowland c i r c l e  
(B ib1 .a )  i n  accordance with t h e  schemes described earlier. Photomultipliers 
represent  highly e f f e c t i v e  receptors f o r  telespectrometers i n  the  v i s i b l e  and 
near-IR regions, w h i l e  photores i s tors  are highly e f f ec t ive  i n  the  central-IR 
region. 
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Fig.2l.X Spec t r a l  S e n s i t i v i t y  of Certain Photores i s tors  at 
Room Temperature ( a )  and on Cooling (b )  . 

1- Ge:Au at  6 9 K ;  2 - Ge:Cu a t  4.2'K; 3 - Ge:Zn a t  4.2'K;
4 - Ge:Cd at  4.2'K; 5 - Ge:Zn, Sb a t  50°K, Ge-Si:Au a t  
50'K; 6 - Ge-Si:Au at  3.50'K; 7 - Ge-Si:Zn, Sb at  50'K; 

8 - Thermistor bolometer at  293'K. 

The c i r c u i t  diagram of photores i s tors  wi th  a load r e s i s t ance  equal t o  t h e  
shadow res i s t ance  of t h e  receptor  i s  analogous t o  t h e  c i r c u i t  diagram of /279
bolometers described earlier (c f .  Sect.3 of this chapter). 

The p r i n c i p a l  types of photores i s tor  no ise  are thermal  noise and current 
noise [generation-recombination and contact noise (Bibl.19, 21) 1. 

The s p e c t r a l  s e n s i t i v i t y  S i  of ho to res i s to r s  at room temperature i s  l imi ted  
t o  wavelengths of 2 - 8 p (Fig.2la.X P. On cooling t h e  curve of s p e c t r a l  sensi
t iv i ty  g e t s  displaced i n  t h e  d i r ec t ion  of longer wavelengths. By cooling photo-
r e s i s t o r s  made of germanium doped with various addi t ions  (or of a germanium-
s i l i c o n  a l l o y )  it i s  poss ib l e  t o  obta in  receptors  displaying high q u a l i t i e s  a l so  
i n  t h e  central-IR region (Fig .2lb .X) . 

A s  a c r i t e r i o n  f o r  various receptors i n  which t h e  r a t i o  of threshold sensi
t i v i t y  af t o  t h e  area A of t h e  receptor i s  independent of t h e  dimensions of t h e  
lat ter,  it i s  convenient t o  employ d e t e c t a b i l i t y  D", determinable from t h e  
equation 

D* = SI;
' 

-
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where S i s  t h e  vol t  s e n s i t i v i t y  and Av i s  the  frequency band a t  which t h e  t o t a l  
noise Uc i s  determined. 

The values of D" f o r  doped germanium r e s i s t o r s  and f o r  a thermistor  bolo
meter according t o  (Bibl.17 and &) are spec i f ied  aboxe ( F i  -2lb.X). For a PbS 
photores i s tor  at  room temperature, doped germanium ( 0 " )  = 1%. cm-cpsu2 w-', 
w h i l e  at -196OC it reaches 1.5 x 104" cm-cpd2 w-' (Bib1 .z) .  For t h e  o ther  
tQes of photoresis tors  indicated i n  fig.2la.X, D" i s  of t h e  order  of 
10 cm cps"" w-1 . 

The time constants of photores i s tors  are comparatively small. They are 
measured i n  microseconds, p a r t i c u l a r l y  i n  t h e  cooled state. The lowest t i m e  
constant, according t o  Hackford (Bibl.&), i s  displayed by germanium doped with 
gold (lo-' sec). T h i s  makes it poss ib le  t o  e f f ec t ive ly  employ photores i s tors  i n  
instruments with high scanning speeds. 

The spec t r a l  instrument i n  t h e  range considered here f inds  i t s  g rea t e s t  
p r a c t i c a l  appl icat ions i n  t h e  determination of t h e  gaseous components of plane
tary atmospheres. Thus, as far  back as i n  1957, Singer and Wentworth suggested 
a method of calculat ing t h e  ozone content of t h e  atmosphere based onomeasure
ments of sca t te red  s o l a r  r ad ia t ion  i n  t h e  Hartley band (1800 - 3400 A) by means 
of a spectrophotometer mounted i n  an a r t i f i c i a l  ea r th  satel l i te  (Bibl.5). Later, 
this method was fu r the r  developed by'G.P.Gushchin (Bibl.5) and proposed f o r  use 
on weather  satellites. It i s  based on per iodic  o r b i t a l  measurements of t h e  /280 
monochromatic solar r ad ia t ion  with tQe wavelength A = 6020 A (maximum of t h e  
Shapuis absorption band 44.00 - 7500 A ) .  

Fig.22.X Infrared Telespectrophotometer f o r  Invest igat ing
t h e  Atmospheres of Planets.  

The spectrophotometer designed f o r  t h e  inves t iga t ion  of Mars and Venus 
from space probes of t h e  Mariner series, with t h e  object  of resolving t h e  ques
t i o n  of t h e  existence of l i f e  on t h e  p l ane t s  [according t o  t h e  presence or a b  
sence of CH-group absorption i n  -3.5 ~1 (Bibl.20) 1, makes i t  poss ib le  t o  obtain 
spectrograms i n  t h e  I R  region (roughly from 3 t o  4. p) with a high reso lu t ion  
t0.l - 0.2 ~1 (Bibl.20)I. 
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The instrument (Fig.22.X) has a Cassegrain-system mirror l ens  10 and a 
mirror monochromator wi th  Swinging d i f f r a c t i o n  g ra t ing  7. The rad ian t  energy, 
d i ssoc ia ted  i n t o  i t s  spectrum, passes  through exit s l i t  4 and i s  focused by t h e  
mirror condenser 3 on a sulfur-lead pho to res i s to r  2. Owing t o  t h e  t i l t e d  posi
t i o n  of t h e  grating, s p e c t r a l  scanning t akes  p lace .  The receptor  i s  cooled t o  a 
temperature of approximately - 7 8 O C  (Bibl.20) by means of t h e  rad ia t ing  d i sk  1. 

The lobe-type modulator 9,  located i n  f r o n t  of t h e  entrance slit of t h e  
monochromator 8, serves t o  i n t e r r u p t  t h e  r a d i a t i v e  flux (frequency 300 cps).  
The e l ec t ron ic  blocks 5 are posit ioned beyond t h e  concave mirror 6 of t h e  mono
chromator. 

The mirror l e n s  of t h e  instrument has a diameter of 102 mm and a viewing 
angle of 0.25 X 2.9, The la t ter  i s  so  se l ec t ed  t h a t  scanning of overlapping 
sec to r s  of t h e  planet’s surface, measuring 64 x 640 Jan i n  area each, would be 
performed at a d is tance  of 15,000 h from t h e  p lane t .  

To accomplish t h e  temperature sounding of t h e  atmosphere from a satel l i te  
by t h e  Kaplan method (Bibl.10, 20), t h e  United S t a t e s  has developed an inf ra - 1281 
red telespectrophotometer measuring r a d i a t i v e  fluxes i n  f i v e  narrow s p e c t r a l  
i n t e r v a l s  i n  t h e  region of C02 absorption i n  the  neighborhood of 1 5  p (698.8;
694.5; 688.5; 677.5, and 667.5 cm-I), approximately 5 cm-l wide (Bib1.28). 

F a r t h  

Fig.23.X Diagram of t h e  Spectrometer for Temperature Sounding. 

The instrument monochrogator (F’ig.23 .X) has a r e f l e c t i n g  d i f f r a c t i o n  grat
i n g  4 with an area of -30 cm , ruled with 49 l i n e s  t o  .the millimeter, as w e l l  
as sphe r i ca l  mirror 3 with a diameter of -4-1 cm. 

The telespectrophotometer operates on t h e  p r i n c i p l e  of t h e  double-beam 
s ingle- receptor  system. The r ad ia t ion  of t h e  earth-atmosphere system i s  directed 
toward t h e  monochromator following i t s  r e f l e c t i o n  from t h e  plane mirror 7, w h i l e  
t h e  r ad ia t ion  of ou te r  space i s  d i r ec t ed  following i t s  r e f l e c t i o n  from t h e  
mirror s ides  of t h e  two-sector modulator 5 posit ioned a t  t h e  angle of 45’ t o  t h e  
o p t i c a l  &s of t h e  monochromator. The modulation frequency of t h e  r a d i a t i v e  
flux i s  15 cps. 

The r ad ia t ion  passing through t h e  entrance s l i t  2 with t h e  f i l t e r  l i s  
gathered by t h e  mirror 3 and d i r ec t ed  onto t h e  d i f f r a c t i o n  gra t ing  4 posit ioned 
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above t h e  entrance slit. The spectrum re f l ec t ed  by t h e  gra t ing  again falls onto 
t h e  mirror  3 which focuses near ly  monochromatic r ad ia t ive  fluxes onto the  f i v e  
exit slits 6 of t h e  monochromator which are posit ioned above t h e  grating. 

Fig.24.X Immersion-Type Thermistor-Bolometer Receptor. 

To ver i fy  t h e  s e n s i t i v i t y ,  a provision has  been made f o r  per iodic  ro t a t ion  
of t h e  inlet-plane mirror 7 d i rec t ing  toward t h e  instrument t h e  rad ia t ion  of an 
absolutely black body with a temperature equal t o  t h e  temperature of t h e  tele
spectrophotometer housing (from 0 t o  6 O o C ) ,  which i s  measured. /282 

The spectrum de tec tors  employed are thermistor  (selenium) bolometers 
mounted beyond the  exit slits of t h e  monochromator. The germanium immersion 
lenses  1 (F’ig.a.X), combined i n t o  a system with r e f l ec t ing  s ides ,  are used t o  
focus the  rad ia t ive  flux onto t h e  bolometers, with t h e  compensating R, and t h e  
operating RT thermistor receptors  being attached t o  these  lenses.  

Under laboratory conditions, t h e  above telespectrophotometer ma? it pos
s i b l e  t o  record a t  room temperature a temperature f luc tua t ion  of 0.2 C. A goal  
of i t s  development was t h e  measurement of a temperature of 0.5OC against  t h e  
background of - 7 O O C . .  The measured spec t r a l  i n t e n s i t i e s  range from 25 t o  
180 erg-cm-” *sec-l *em-’ *ster-’ (Bibl.20). 
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PART I V  /283 
OBTAINING THE IMAGES OF TI-B PLANETS AND OF TKE 

CLOUD COVER 

Planet images from rockets and space vehicles may be obtained with t h e  a i d  
of photographic, photo te lev is ion  or scanning instruments. Each type of appa
ra tus  may operate i n  various por t ions  of t h e  o p t i c a l  range of t h e  spectrum. 

The use of photographic methods f o r  obtaining images i n  ou te r  space involves 
d i f f i c u l t i e s  i n  developing t h e  photographs and t ransmi t t ing  t h e  information t o  
ear th .  Hence, they are less widely used than t e l e v i s i o n  methods, which are 
based on obtaining e l e c t r i c  s igna l s  and t ransmi t t ing  these  via communication 
channels. Television methods, however, are as ye t  d i f f i c u l t  t o  employ under 
conditions of low i l lumina t ion  of t h e  transmitted image. Accordingly, i n  order 
t o  obta in  images of t h e  night-cloud cover, i n f r a red  scanning instruments, which 
e s s e n t i a l l y  represents a va r i e ty  of t e l e v i s i o n  apparatus w i t h  c e r t a i n  s p e c i f i c  
fea tures  of t h e i r  own, began t o  be employed i n  t h e  weather s a t e l l i t e s  of t h e  
Nimbus series. 

CHAPTER X I  

SCANNING INSTRUMENTATION 

Section 1. Optical-Kinematic Diagram 

The operating p r i n c i p l e  of a scanning apparatus l i e s  i n  t h a t  t h e  r a d i a t i v e  
f l u x  from elements of t h e  scanned surface i s  successively converted i n t o  e l e c t r i 
c a l  s igna l s  which are transmitted t o  t h e  receiving side,  where they a r e  recon
verted i n  t h e  same sequence t o  mean br ightness  of t h e  image elements. The oper
a t i n g  p r inc ip l e  of a scanning instrument thus resembles t h e  operating p r i n c i p l e  
of every cur ren t ly  used apparatus f o r  t h e  transmission of images via communi- /284 
ca t ions  channels, and p a r t i c u l a r l y  t h a t  of a t e l e v i s i o n  apparatus. The pr inc i 
p a l  d i f fe rence  between an  o p t i c a l  scanning apparatus and a t e l e v i s i o n  apparatus 
l ies i n  t h a t  scanning apparatus usua l ly  employs a s ing le  receptor which succes
s i v e l y  receives t h e  radiative f l u x  from elements of t h e  scanned surface.  The 
successive survey of elements (scanning) i s  then, as a rule, accomplished by 
means of optico-mechanical systems of various designs. The dimensions of t h e  
scan elements, t h e  operating s p e c t r a l  range and o the r  parameters of t h e  appa
ra tus  depend on t h e  p a r t i c u l a r  purpose f o r  which it i s  designed. 

Scanning instruments are used f o r  measurements of every po r t ion  of t h e  
electromagnetic energy spectrum. 

I n  t h e  o p t i c a l  range, scanning instruments are used f o r  measurements of t h e  
angular d i s t r i b u t i o n  of t h e  r ad ia t ion  of t h e  ear th ,  clouds and t h e  atmosphere, 
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i.e., of parameters measurable by op t i ca l  methods ( c f .  Chapt.M and X). They 
can be used, i n  pa r t i cu la r ,  f o r  satell i te measurements of t h e  temperature and 
humidity f i e l d s ,  of t h e  ozone d is t r ibu t ion ,  of t h e  carbon dioxLde d i s t r ibu t ion ,  
e t c .  

I n  observations of t h e  cloudiness, t h e  p r i n c i p a l  advantage of an inf ra red  
scanning instrument compared with t e l ev i s ion  apparatus l ies  i n  t h a t  it de tec t s  
t he  na tura l  rad ia t ion  of ob jec ts  and hence can operate on a &-hour bas i s  and 
not j u s t  during so la r  i l lumination. Considering t h a t  t h e  attainment of a high 
resolving power R of in f ra red  scanning instruments involves various technica l  
d i f f i c u l t i e s ,  t h e  American satellites of t h e  Nimbus series employ a combination 
of t e l ev i s ion  and infrared-scanning instruments ( t h e  former f o r  daylight opera
t i o n  and t h e  l a t t e r  f o r  night operation) (Bibl.5). 

Optico-electromechanical devices, designed t o  determine t h e  coordinates of 
various t a r g e t s  according t o  t h e i r  own na tura l  thermal emission, are termed 
heat radar.  Both scanning and scanning-tracking systems of this kind are used 
f o r  military purposes. The former serve t o  de tec t  heat-emitting t a r g e t s  during 
heat reconnaissance of t e r r a i n  and t h e  lat ter,  t o  home-in weapons (Bibl.1) . 

In  inf ra red  scanning instruments, images are most of ten  obtained by survey
ing  t h e  invest igated area with a narrow (needle-like) beam with a r e c t i l i n e a r  
l i n e  scanning. The scanning i s  performed f o r  ins tance  i n  t h e  instrument used 
i n  the  United S ta tes  (Bibl.4) by means of t h e  ro t a t ion  of a pr ismatic  mirror  
drum 1 (Fig.l.XI) with n s ides .  Following r e f l e c t i o n  from one of t h e  s ides ,  /zs5
t h e  bundle of rays r e f l ec t ed  f r o m  or emitted by t h e  scanned surface i s  focused 
by t h e  parabol ic  mirror MI onto t h e  receptor  R. The plane mirror Mz serves t o  
vary t h e  d i rec t ion  of this bundle f o r  a given layout of t h e  instrument. Every 
time a drum s ide  passes through t h e  f i e l d  of View of t h e  mirror MI, a d i f f e r e n t  
l i n e  of t e r r a i n  i s  scanned. 

Fig.l.XI Diagram of an Optico-Mechanical Scanning S y s t e m .  

The s igna l  produced by t h e  receptor  i s  conveyed t o  t h e  atmlifier A and 
thence t o  the e lec t ronic  c i r c u i t  where it usual ly  combines With t h e  timing 
pulses  determining t h e  beginning and end of every scanning l i n e  according t o  t h e  
s igna ls  of t h e  pickups connected t o  drum 1. 

Scanning i n  t h e  form of p a r a l l e l  l i nes ,  as obtained i n  t h e  above case, i s  
termed r e c t i l i n e a r .  The techniques of such scanning may vary. I n  pa r t i cu la r ,  
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drum l m a y  be replaced by a s ing le  swinging or n o n d f o r m l y  revolving t i l t e d  
mirror. 

Scanning devices of t h e  survey-and-search type are a l so  based on o ther  forms 
of scanning. Thus s p i r a l ,  or zigzag-like, scanning i s  more e f f ec t ive  i n  heat 
radar devices ( e  .go, i n  in f r a red  homing instruments) (Bibl.1). 

Devices f o r  measuring t h e  r ad ia t ion  balance, as well as photometers and 
radiometers (c f .  Chapt.M and X) employ an elementary scanning system based on 
t h e  uniform ro ta t ion  of a sens i t i ve  head equipped with a t i l t e d  mirror. 

The se l ec t ion  of t h e  form of scanning and t h e  design of t h e  optical-kine
matic system are thus a funct ion of t h e  purpose f o r  which t h e  scanning ins t ru
ment happens t o  be designed and of t h e  information which it provides. A l l  kinds 
of such instruments, however, have i n  common ce r t a in  features stemming from t h e i r  
operating pr inc ip le .  We w i l l  examine these features as exemplified by t h e  r e c t i 
l i n e a r  optical-mechanical scanning system employed i n  the  instrumentation of t h e  
Nimbus-series satellites. 

Section 2. 	 Dimensions of t h e  Scan Element and 
Form of t h e  Scan =ne 
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The dimensions Ax and Ay of t h e  terrain-scan element (fig.2.XI) are deter
mined by t h e  instrunent  a l t i t u d e  H, t h e  f ixed angle of t h e  f i e l d  of v i e w  (char
ac te r ized  by t h e  angular dimensions 6x and 6y), and t h e  scanning angle y (devia
t i o n  of t h e  l i n e  of s igh t  from t h e  ve r t i ca l ) .  It follows from Fig.2.XI, t h a t  
for a t e t r ahedra l  instantaneous viewing angle of t h e  instrument, required f o r  
t h e  compact coordination of t h e  scan elements, t h e  l i n e  width will be 

6 y  2H tan- 6Y 
Ay =2 0  tan-.. =---? ~ - .  

2 c o s y  

The dimension of an a r b i t r a r y  scan element along t h e  l i n e  w i l l  be 

AX = __ _ _ ~  
6 x  .

cos2y + cos y sin y tan-
2 

(20x1) 

For a needleshaped scanning beam (6x = 6y = 0) eqs.(l.XI) and (2.XI) may 
be simplified and wr i t t en  as 

2.9 1O - 4 ~6 x2 . 9 . 1 0 - 4 ~ 6 9Ay x 
cos y 

and& x 
cos2 y ” 

-

where 2.9 x lom4 i s  t h e  conversion f a c t o r  f o r  converting t h e  angle minutes i n t o  
radians 

If t h e  l i n e  length L f o r  t h e  t e r r a i n  or f o r  t h e  m a x i ”  scanning angle ymax 
i s  la rge  ( L  > 4-00 - 500 km), t h e  dimensions of t h e  scam elements at  t h e  l i n e  
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edges must be determined, tak ing  i n t o  account t h e  curvature of t h e  e a r t h  surface, 
s ince  obviously the  e r r o r s  i n  t h e  ca lcu la t ions  from t h e  equations f o r  scanning 
a plane surface [eqs.(l.XI) and (2.XI)l would otherwise be s u b s t a n t i a l  (several 
t e n s  of percent or even higher). 

Equations taking i n t o  account t h e  curvature of t he  p l ane t  surface t o  a first 
approximation ( a s s a n g  t h a t  t he  p l ane t  has t h e  shape of a sphere with t h e  
radius R s a r t h  and disregarding t h e  curvature of t h e  scan element i t se l f ,  and 
f u r t h e r  assuming t h a t  all t h e  rays running from t h e  instrument t o  t h e  scan ele
ment encounter it at  t h e  same angle 8 )  may be derived with t h e  a i d  of Fig.3.XI. 
It follows from this f i g u r e  t h a t  t h e  dimension of t h e  scan element over t h e  l i n e  
length w i l l  be, on taking curvature i n t o  account, 

6% 
M P  20 tan--

2
AXc -- MC = sin 0 = = 

x 2.9 - I O-'D 6 x ( 4 . m  
cos ycos (y +f)' 

H + R e a r t h  (1 - C O S  -)Q 
where D = cos y 

i s  t h e  inc l ined  d is tance  t o  t h e  scan /287 

element, Q i s  t h e  angular dimension of t h e  scan zone from t h e  center  of t h e  
ea r th  and R e P r t h  i s  t h e  rad ius  of t h e  e a r t h  ( o r  of a p l ane t ) .  

Proceeding from t h e  same reasoning, t h e  dimension of t h e  scan element over 
t h e  l i n e  width, taking i n t o  account t h e  curvature as w e l l  as t h e  smallness of 
t h e  viewing angle ( t a n  6y = 2.9 x 6y) w i l l  be 

These equations show c l e a r l y  t h a t  on the  curve of t h e  p l ane t ' s  surface t h e  
dimensions of t h e  scan elements a t  the  l i n e  edges, and e spec ia l ly  t h e  dimension 
over t h e  l i n e  length  Ax,, are g rea t e r  than on a p lane  surface. A s  t h e  o rb i t i ng  
a l t i t u d e  H increases,  f o r  a f ixed  viewing-angle 6x and 6y t h e  dimensions Ax, 
and Ayc increase,  p a r t i c u l a r l y  when t h e  l i n e  of s i g h t  D approaches t h e  tan
g e n t i a l  p o s i t i o n  (Fig.3.XI). T h i s  i s  i l l u s t r a t e d  by t h e  curves of t h e  r a t i o  be
tween t h e  dimensions Ax, and Ayc and t h e  m i n i m a l  and Ay, (when y = 0), as 
i s  shown i n  Fig.k.XI. It can be seen from these  curves t h a t ,  depending on t h e  
a l t i t u d e  H of t h e  satell i te,  a l imi t ing  scanning angle ymaxexists beyond which 
t h e  dimensions Axc and Ay, begin t o  increase  sharply. 

Hence, t h e  dimensions of t h e  scan elements, i n  t h e  scanning of both plane 
and p a r t i c u l a r l y  i n  curved surfaces,  increase  with t h e  approach t o  t h e  l i n e  
edges (with increas ing  scanning angle y) and t h e  l i n e s  broaden, as i s  schemati
c a l l y  shown i n  Fig.2.XI. 

We w i l l  construe t h e  resolving power of t h e  scanning instrument as t h e  
quantity R inverse ly  propor t iona l  t o  t h e  area AA of t h e  t e r r a i n  scan element. 
Then, on.using equations (1 .XI )  and (2.XI) f o r  a p lane  surface, we have 
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I 1R = - -
AA 

-
AxAy 

x Rocos3y, (6 .XI)  

1 i s  t h e  reso lu t ion  at  t h e  center  of t h e  l i n e  ( a twhere RO = 8.4 x lo-’ H26x6y 
t h e  nadi r ) .  

Cn. /288 

Fig.2.XI Variation of a Scan Element along a Line. 

For a sphe r i ca l  surface, t o  a first approximation, we have 

These equations show t h a t  t h e  resolving power of t h e  instrument with an /289 
optical-mechanical scanning system decreases with an increas ing  scanning angle 

2 i fi n  a roughly d i r e c t  proportion t o  COS” y o r  COS” y cos (y + L), t h e  l i n e  

length i s  considerable and allowance f o r  t h e  planet’s curvature i s  required. 

The decrease i n  resolving power a t  t h e  edges of t h e  scan l i n e  may be e s t i 
mated with t h e  a i d  of t h e  graphs shown i n  Fig.4.XI. Thus, e.g., f o r  a Nimbus 
type satel l i te  which scans theoea r th*s  surface from an  a l t i t u d e  of 1000 km a t  a 
viewing angle CY = 2 ymax= 105 on using t e l e v i s i o n  cameras during t h e  daylight 
hours, i n  such a manner t h a t  t h e  e n t i r e  space between any two o r b i t s  around t h e  
e a r t h  ( L  = 3000 km) would be scanned without leaving out any gaps (Bibl.5), t h e  

262 



de te r io ra t ion  i n  the  reso lu t ion  a t  t h e  l i n e  edges i s  

and, s ince  t h e  viewing angle increases  furthermore, t h e  rate of t h e  loss  of 
reso lu t ion  increases  even more rapidly.  

Fig.3.XI Pos i t ion  of a Scan Element on a Spherical  Surface. 

Line broadening a t  t h e  edges leads  a t  t h e  same t i m e  t o  t h e  overlapping of 
l i n e s .  The extent of t h e  overlap of neighboring l i n e s  c l e a r l y  cont r ibu tes  /290 
t o  t h e  de t e r io ra t ion  of resolving power i f  t h e  l i n e s  ad jo in  each o ther  c lose ly  
i n  t h e i r  cen t r a l  p a r t s .  

Thorough scanning without any gaps thus  requires t h e  matching of t h e  dimen
s ion  of t h e  scan element over t h e  l i n e  width a t  t h e  l i n e  center  flyo ( f o r  y = 0) 
with t h e  scanning time t, and t h e  rate of motion of t h e  instrument's p ro j ec t ion  
over t h e  p lane t  surface v,, . Figure 2.XI shows t h a t  f o r  l i n e  contact t h e  rela
t i o n  

f, = z:2.9 - 10-4 H6Y ( 8 . m  
vPC vpr 

must be s a t i s f i e d .  

The pulse  time o r  t h e  scanning time t, p e r  scan element decreases i n  propor
t i o n  with t h e  number of elements present  along a l i n e ,  namely: 
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- - - fc =f,	6% 2.9 - 10-4H dy6x  
a av pr 

Equation (9.XI) makes i t  poss ib le  t o  i n f e r  t h e  required modulation fre
quency v, and t h e  frequency band AV at  t h e  amplifier i q u t ,  as well as t o  deter
mine t h e  requirements as t o  t h e  i n e r t i a  T of t h e  receptor.  

&XC 
a x  H=30L 

3.8 - H=5000km 

3.9 
-3.0 - 3.0 

2.8 -

Fig.4.XI Variation i n  Relative Dimensions of Scan Elements 
along ( a )  and across (b )  a Line during Scanning. 

If t h e r e  i s  no modulation of t h e  r ad ia t ive  flux, t h e  i n e r t i a  7 of t h e  re
ceptor should be s m a l l  enough t o  cause, over t h e  t i m e  t,, t h e  s igna l  amplitude 
i n  i t s  c i r c u i t  diagram t o  reach nearly 100%of i t s  steady-state value (compared 

with t h e  preceding element). If 7 = -
2 

t,, t h e  s igna l  amplitude W i l l  reach 

-95% of i t s  steady-state value, and i f  7 = i,t, = -98%. 

Thus, t he  i n e r t i a  (t ime constant) of t h e  de t ec to r  must s a t i s f y  t h e  r e l a t i o n  

(1O.XI) 

It follows from eq.(lO.XI) t h a t  a s u f f i c i e n t l y  high reso lu t ion  of t h e  in
strument with an  optical-mechanical scanning system may be achieved only on 
using a low-inertia receptor.  For example, i n  t h e  Tiros type weather s a t e l l i t e  
[H = 700 km, o r b i t a l  ve loc i ty  v = 7.65 km/secd v,, = 6.8 km/sec (Bibl.2)I a non
cooled bolometer wi th  t h e  i n e r t i a  T = 5 x 10' sec,  for t h e  viewing angle a = 
= 4.3'50' ( L  = 1500 km), assures a reso lu t ion  of not more than Ro = 0 .Oa  Ian-" a t  
t h e  nadi r  ( then 6x = 6y = 4.2' and AxoAyo = 8.5 x 8.5 Ian2). To assure a resolu
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t i o n  of Ro = 1km-” (Axo = Ayo = 1km, 6x = 6y = 6’ ) a t  t h e  nadir,  a receptor
with t h e  i n e r t i a  T 0.1 msec i s  required, as implied by eq.(lO.XI). 

The upper frequency vu of t h e  s igna l ,  as implied by A.V.Kotelfnikovfs /291 
theorem (Bibl.3) and eq.(S.XI) w i l l  be 

(11.XI) 

The lower frequency, corresponding t o  t h e  transmission of a monotone image, 
w i l l  correspond t o  t h e  l i n e  frequency, i.e., will be low. Thus, t h e  s igna l  fre
quency band a t  t h e  amplifier input  w i l l  be Av = vu.  

DC amplifiers are r a r e l y  used i n  scanning instruments. T h i s  i s  due t o  t h e i r  
zero d r i f t  and unstable amplification f a c t o r .  To employ AC amplifiers, t h e  
s igna l  i s  modulated wi th  t h e  a i d  of a mechanical f l u x  interruptor-modulator 
(Bibl.1, 2). 

The modulation frequency v, must be taken a t  one order of magnitude g r e a t e r  
(Bibl.3) than  t h e  upper s igna l  frequency vu,  so as t o  reproduce t h e  s igna l  shape 
more accurately,  i . e . ,  i t  must s a t i s f y  t h e  r e l a t i o n  

105av,
Y, = lOV, x 

5.8H6x6y (12.n) 

The frequency band i n  t h e  instrument with modulation i s  broadened by rough
l y  one order of magnitude, as we can see, and t h e  requirements f o r  t h e  re
ceptor’s i n e r t i a  correspondingly increase.  T h i s  means t h a t  a receptor with t h e  
t i m e  constant T = sec i s  required i n  order t o  obta in  the  reso lu t ion  Ro = 
= 1km-”. 

The s e n s i t i v i t y  of t h e  scanning instrument i n  t h e  event t h a t  t h e  absolute 
magnitude of r a d i a t i v e  f luxes  f r o m t h e  scan elements i s  measured, i s  determined, 
as usual, by a spec i f ied  signal/noise r a t i o  a t  t h e  pre-amplifier input  ( c f .  
Chapt.IX and X ) .  The s e n s i t i v i t y  of t h e  scanning instrument designed t o  obta in  
only t h e  image of some surface i s  characterized by i t s  energy resolution. 

Section 3 .  Enerm Resolution 

The energy r e so lu t ion  of t h e  scanning instrument designed t o  obta in  images 
i s  defined as t h e  m i n i m a l  d i f fe rence  between s igna l s  corresponding t o  t h e  ar
r i v a l  of r ad ia t ion  fluxes a t  t h e  receptor from two adjacent scan elements, one 
of which i s  taken as t h e  reference reckoning level (background). A s  was pointed 
out  earlier (Chapt.X), t h e  i l l m i n a t i o n  of t h e  receptor  of an IR instrument i s  
due t o  t h e  combination of t h e  f luxes  of n a t u r a l  and r e f l e c t e d  r ad ia t ion  of t h e  
observed objec t  or background, t h e  fluxes of t h e  n a t u r a l  and sca t t e red  r ad ia t ion  
of t h e  atmosphere, and t h e  n a t u r a l  r ad ia t ion  fluxes of t h e  p a r t s  of t h e  in- /292 
strument ( i n  t h e  IR region). As a result, t h e  energy reso lu t ion  of t h e  IR scan
ning instrument depends on many f ac to r s :  

on t h e  state and phys ica l  na ture  and temperature of t h e  objec t  and 
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background; 
on t h e  p rope r t i e s  of t h e  receptor ;  
on the  parameters and design of t h e  o p t i c a l  system; 
on t h e  conditions of observation and t h e  state of t h e  atmosphere. 

The basic  condi t ion for t h e  energy reso lu t ion  of an objec t  aga ins t  i t s  
background under given observation conditions is, i n  accordance with this def i 
n i t i on ,  wr i t ten  as 

where Uob and Ub are t h e  objec t  and t h e  background s igna l  voltages,  respective
ly ;  U, i s  t h e  mean square noise  i n  t h e  receptor 's  c i r c u i t  diagram f o r  a given
transmission band A f ;  and c i s  t h e  f ac to r  of assurance, whose magnitude depends 
on the  nature  of t h e  problem ( c f .  Chapt.IX). 

The receptor  s i g n a l  wi th in  t h e  spec t r a l  s e n s i t i v i t y  range h l  - A 2  of t h e  
instrument i s  determined by i t s  spec t r a l  s e n s i t i v i t y  S i  and calculated from t h e  
equation 

h 


Uob. b. = SA@,dA, ( & X I >  
A1 

where P, i s  t h e  spec t r a l  dens i ty  of t h e  r ad ia t ive  f lux inc ident  on the  receptor .  

For plane objec ts  obeying Lambert's l a w  and occupying t h e  e n t i r e  f i e l d  of 
v i e w  of t h e  instrumentTs opt ics ,  t h e  monochromatic r ad ia t ive  flux inc ident  on 
t h e  receptor  i s  

** where u) = -3-i s  t h e  s o l i d  viewing angle of t h e  instrument;  CY and are t h e  

angles  between t h e  scanning beam and t h e  normal t o  t h e  rad ia t ing  surface AA, 
pXo and P X a  are t h e  s p e c t r a l  t r a n s m i t t i v i t i e s  of t h e  ins t rument fs  op t i c s  and of 
t h e  atmosphere, respect ively;  rX i s  t h e  s p e c t r a l  dens i ty  of t h e  rad ian t  emit
tance of t h e  scan element AA; and Aa i s  t h e  area of t h e  entrance p u p i l  of t h e  
optical-system eyepiece. 

Note t h a t  i n  pass ive  I R  instruments, which are of t h e  g r e a t e s t  i n t e r e s t  t o  
t h e  study of t h e  p lane ts ,  rX i s  determined from Planck's equation i n  accordance 
wi th  t h e  temperature T of t h e  rad ia t ing  surface and i t s  emissivity c .  

From eqs.(l3.XI) - ( 1 5 . X I )  we f ind  t h a t  t h e  energy reso lu t ion  of t h e  scan
ning instrument i s  determined by t h e  r e l a t i o n  

/293 
1 2  

-__. --JA a A A  cos u cos P 
P O  aPa >.SA(mOL - r~b ) d h  = k u n  . ( 16.XI) 

llH2 A I  

266 




r 


For iven  parameters of t h e  instrument (SA, AA, U, , e t c  .), on using 
eq.(lb.XIY, it i s  poss ib le  t o  f ind  t h e  required area Aa of t h e  entrance pup i l  of 
t h e  eyepiece ( a rea  of t h e  s e n s i t i v e  mirror). The f o c a l  length f of t h e  l e n s  i s  

determined by i t s  speed -	d on taking i n t o  account t h e  required geometric reso
f 

lu t ion .  The o p t i c a l  scheme of t h e  scanning instrument implies t h a t  ( f o r  f 4 H) 

where a and b are t h e  dimensions of a t e t r agona l  receptor. 

It must be borne i n  mind t h a t  t h e  i l lumina t ion  of a receptor w i t h  a non
l i n e a r  luminous c h a r a c t e r i s t i c  alters i t s  s e n s i t i v i t y .  Changes i n  t h e  illumina
t i o n  of a receptor of this kind result i n  changes i n  t h e  energy reso lu t ion  of t h e  
instrument, although t h e  energy cont ras t  between t h e  objec t  and t h e  background 
(nab - r l m e a n )remains t h e  same. With increas ing  i l lumina t ion  of t h e  receptor 
t h e  instrument's s e n s i t i v i t y  decreases. For  this reason, instruments operating 
i n  t h e  v i s i b l e  or near-IR region sometimes are provided w i t h  a photorelay which 
reduces daytime i l lumina t ion  by means of an  o p t i c a l  wedge (Bibl.1). 

To increase  resolving power w i t h  respect t o  area and energy, i t  i s  c l ea r ly  
necessary t o  use receptors w i t h  a small area, a m i n i "  i n e r t i a  and a maxi" 
s e n s i t i v i t y .  I n  a single-receptor scanning system t h e  requirements f o r  the  re
ceptor with respect t o  t h e s e  parameters are thus extremely high. Mcreover, ter
rair, surveying with a needle ray requires an i n t r i c a t e  kinematic diagram of t h e  
scanning system. A way out of this s i t u a t i o n  w a s  found by r e so r t ing  t o  a mosaic-
type receptor, consisting of a su f f i c i en t ly  l a rge  number N of s m a l l  s ens i t i ve  
elements (Bibl.1). Each element of t h e  mosaic surveys a corresponding element 
of t e r r a i n ,  and scanning i n  this case i s  accomplished e l ec t ron ica l ly  with t h e  
a id  of  a commutator mounted a t  t h e  receptor output ( i n  f r o n t  of or beyond t h e  
preamplifiers) or i n  t h e  receptor power supply c i r c u i t .  I n  t h e  former case it 
i s  poss ib le  t o  enhance s e n s i t i v i t y  owing t o  t h e  accumulation of energy i n  t h e  
receptor tank c i r c u i t  which i s  tuned t o  t h e  modulation frequency of t h e  r ad ia t ive  
f l u x  (Bibl.1). 

The requirements f o r  t h e  i n e r t i a  7, of t h e  mosaic elements dl1 clea r ly  /294
be N times smaller than  t h e  requirements f o r  a s i n g l e  receptor, i.e., 

(18.XI) 

The conversion t o  mosaic receptors, however, involves t h e  need t o  solve 
various add i t iona l  problems. The p r i n c i p a l  d i f f i c u l t i e s  p e r t a i n  t o  t h e  con
s t r u c t i o n  of receptors and t h e  design of t h e  o p t i c a l  systems and commutators f o r  
a l a rge  number of elements (Bib1.1). Television tubes represent a new advance 
i n  t h e  development of mosaic receptors with e l ec t ron ic  comutation. Thus, i n  
t h e  long run t h e  development of scanning devices Will hinge on t h e  development 
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of t e l ev i s ion  engineering. 

Section 4. Narrow-&le Scaneng Radigmeter-

The block diagram of t h e  scanning radiometer used i n  t h e  Nimbus-series 
satellites t o  obtain information on global-scale cloud conditions i s  shown i n  
Fig.5.XI. Scanning i n  this case i s  assured by t h e  swinging of t h e  plane mirror 1 
linked t o  t h e  scanning-system drive SSD and posit ioned at  t h e  angle of 4-5' t o  
t h e  op t i ca l  d s .  The d i r ec t ion  of scanning i s  at r igh t  angles t o  t h e  f l i g h t  
d i r ec t ion  of t h e  satellite. The swinging rate of t h e  mirror corresponds t o  
0.67 rev/sec (Bibl.5). The rad ia t ive  flux re f l ec t ed  by t h e  scanning mirror 1i s  
focused on t h e  receptor R by a Cassegrain-system mirror l ens  consis t ing of t h e  
mirrors 6 and 7. The f i l t e r  4 i s  used t o  i s o l a t e  t h e  operating spec t ra l  range 
[ i n  this case the  atmospheric window of from 3.5 t o  4.2 p (Ribl.5)I. The modula
t i o n  of t h e  rad ia t ive  f lux  [with a frequency of -260 cps (Bibl.6)] i s  accomplished 
by t h e  in t e r rup to r  3 .  

The receptor of t h e  r ad ia t ive  f l u x  i s  represented by a low-inertia PbSe re
ceptor, cooled by t h e  element 5 [ the  PbSe photores i s tor  operates a t  a tempera
ture of approximately - 8 O O C  (Bib1.25)I. The si na l  from the  recept;or R i s  ampl i 
f i ed  by t h e  multi-stage amplifier A ( a t  260 cps7 and thereupon r e c t i f i e d  by t h e  
c i r c u i t  Rect. After this, a constant voltage i s  supplied t o  t h e  controlled 
generator CG and recorded on t h e  magnetic tape of t h e  recording device RD. The 
frequency deviat ion of CG i s  2.5 cps, and t h e  zero l e v e l  ( s igna l  from outer  
space) i n  this instrument corresponds t o  t h e  recording of a 10 cps frequency 
w h i l e  t h e  maxi" temperature TE.max of t h e  emitt ing surface (ear th)  corresponds 
t o  t h e  7.5 cps frequency (Bibl.6). 

2 

Fig.5.XI Block Diagram of t h e  IR Scanner of t h e  
Nimbus Sate l l i te. 

The s e n s i t i v i t y  of t h e  measuring c i r c u i t  i s  checked with t h e  a id  of s igna ls  
from t h e  blackbody 2, supplied per iodica l ly  during ro t a t ion  of t h e  scanning 
mirror 1. 

Thus, i n  this case t h e  scanning device i s  a radiometer which measures the  
angular d i s t r i b u t i o n  of t h e  absolute values of outgoing rad ia t ion  i n  the  /295
region of t h e  atmospheric transparency Window ( i n  the  neighborhood of 4 p) .  The 
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results of such measurements c l ea r ly  can be u t i l i z e d  not only t o  determine the  
p i c tu re  of t h e  cloud d i s t r ibu t ion ,  but  a l so  t o  obtain various o ther  information 
supplied by radiometers and, i n  pa r t i cu la r ,  t h e  temperature of rad ia t ing  surfaces.  
The estimated measurement e r r o r  for t h e  e f f ec t ive  temperature i n  this case i s  
-2.5OC (Bibl.2). 

The viewing angle of t h e  instrument mounted on t h e  Nimbus satell i te 
(Bibl.2) was w = 8.4 x lom3ster or 30 X 30 sec, which, a t  an  o r b i t  a l t i t u d e  of 
-1000 km, assures a l i n e a r  resolving power of -10 km a t  t h e  l i n e  center. The 
resolving power a t  the  l i n e  edges f o r  a viewing angle of-110 de te r io ra t e s  by 
roughly one order of magnitude, as i s  shown i n  Fig.4.XI. 

CHAPTER X I 1  

PHOTOGRAPHIC INSTRUMENTATION 

-Section 1. General Information on Aerial Photographic Instriments 

The cameras mounted i n  various f l i g h t  vehicles  are termed aerial cameras. 
They are distinguished by t h e i r  automated design and by t h e  high qual i ty  of t h e  
photographs they obtain.  

There i s  a l a rge  number of various designs of aerial  cameras i n  existence 
(Bib1.1, l+., l5), but they a l l  have t h e  same p r inc ipa l  components and elements i n  
common. 

The t i c a l  diagram of an aerial camera (Bibl.4) includes the  housing 1 
(Fig. la .XI3,  t he  a e r i a l  photographic l ens  2, t h e  s h u t t e r  3, t h e  magazine 9, t h e  
d i s t r ibu t ing  mechanism 4,  t h e  mount 5, t o  which it i s  attached via shock ab- /296
sorbers,  t h e  cont ro l  device 8 and t h e  motor 6, l inked by t h e  cables 7. 

6 /' 

Fig .1. X I 1  Diagrams of 	Conventional ( a )  and Slit-Type (b)
Aerial Cameras. 

The camera housing 1i s  a round or rectangular  d u r a l d n u m  casting. Located 
i n  t h e  upper p a r t  of t h e  housing i s  t h e  leve l ing  g l a s s  11. The magazine 9 
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contains a s t o r e  of f i l m  as well as devices f o r  moving, proportioning and level
i n g  of t h e  f i l m  during exposure. 

The d i s t r i b u t i n g  mechanism 4 of t h e  camera t ransmi ts  t h e  motion of t h e  
motor 6 t o  t h e  magazine and t h e  s h u t t e r  elements. The cu r ren t ly  ex i s t ing  
cameras contain mechanisms of t h e  mechanical or e l e c t r i c a l  type (Bibl.1, 4). 

The con t ro l  device 8 automatically t r i g g e r s  t h e  operation of t h e  camera at  
f ixed  time i n t e r v a l s  and it a l s o  cont ro ls  t h e  performance of every mechanism of 
t h e  camera. It can be p r e s e t  t o  regula te  t h e  required exposure t i m e  to accord
i n g  t o  t h e  conditions during p i c t u r e  taking. The time i n t e r v a l  t between ex
posures i s  f ixed  according t o  t h e  spec i f ied  l eng th  of t h e  photograph 4, along 
t h e  f l i g h t  l i n e  and t h e  overlap qx between t h e  photographs (Bibl.4). 

I n  t h e  event t h a t  t h e  p i c t u r e  taking must be performed at high f l i g h t  
speeds, s l i t - t y p e  cameras are employed (Bibl.10). The sl i t  3 (Fig.lb.XII), lo
cated i n  t h e  f o c a l  plane of t h e  s l i t - t ype  camera, serves t o  p r o j e c t  t h e  image 
onto a f i l m  continuously moving across t h e  s p o o l & .  To obta in  a sharp image 
( t o  eliminate crabbing) t h e  movement of f i l m  and camera must be rigorously co
ordinated, namely, t h e  displacement rate vi of t h e  image i n  t h e  f o c a l  plane of 
t h e  l e n s  2 must equal t h e  rate of motion vf of t h e  f i l m  (vi = vf ) . 

The exposure time i s  determined by t h e  time of movement of t h e  film across 

a s l i t  of width b, i.e., to = -.	b Hence, t h e  exposure t i m e  may be changed /297vi 
by changing t h e  s l i t  width b. 

The aerial photograph obtained by t h e  slit-type camera thus  represents a 
continuous tape  onto which a l l  objec ts  are pro jec ted  a t  v i r t u a l l y  t h e  same 
angles. Displacing t h e  s l i t  i n  t h e  f o c a l  p lane  makes it poss ib l e  t o  take  
p i c t u r e s  from various angles. The f i lm  i n  t h e  s l i t - t ype  camera i s  s tored  on 
spools 5 placed i n  t h e  housing 1. I n  order t o  photograph simultaneously l a r g e  
areas of ground, m u l t i p l e l e n s  cameras of both types have been developed 
(Bib1.lo). 

Figure 2.XII i l l u s t r a t e s  t h e  course of t h e  p ro jec t ive  l i n e s  f o r  c e r t a i n  
p o i n t s  0, N, P and t h e i r  corresponding po in t s  0, n, p during aerial photograph
i n g  from t h e  a l t i t u d e  H. Point S represents  t h e  combined a n t e r i o r  and p o s t e r i o r  
nodal p o i n t s  of l e n s  1. 

Distance f from t h e  p o s t e r i o r  nodal po in t  of t h e  l e n s  t o  t h e  f o c a l  plane op 
represents t h e  c a e r a  constant ( f o c a l  length).  Point 0, representing t h e  base 
of a plumb l i n e  running from t h e  a n t e r i o r  nodal po in t  of t h e  l e n s  t o  t h e  p lane  op 
of t h e  photograph, i s  termed t h e  p r i n c i p a l  po in t  of t h e  photograph. The angle 
B, formed by t h e  p r i n c i p a l  l i n e  OS and t h e  nad i r  l i n e  Sn, i s  t h e  angle of in
c l i n a t i o n  of t h e  photograph. 

Photography performed a t  angles of i n c l i n a t i o n  amounting t o  not more than  
5' i s  termed plane photography, and t h a t  performed a t  B > 9 ,  i s  termed per
spec t ive  photography (Bib1.1, ?). 
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Fig.2.XII Course of t h e  Project ive Line. 

The sca le  m of t h e  photograph i s  t h e  r a t i o  of t h e  length of a segment 6 on 
a photograph t o  i t s  ac tua l  length A on t h e  t e r r a i n .  For v e r t i c a l  photograph
( B  = 0) of a f l a t  surface from a considerable height ( H  9 f ) ,  as F'ig.2.XII shows, 
we have 

( L X I I )  

For dissected t e r r a i n  or i f  the  camera axis i s  inc l ined  during t h e  photo
graphy, s ca l e  d i s to r t ions  are present  on t h e  photograph; allowance f o r  these  
d i s to r t ions  can be made by photogrammetric techniques (Bibl.4, 7). 

A s  pointed out by A.Katz (Bibl.l6), using wide-angle aerial cameras placed 
i n  a high o r b i t  makes it possible  t o  encompass l a rge  e q a n s e s  of area during t h e  
cloud observations needed f o r  t h e  ana lys i s  of meteorological processes. 

To r e t a i n  a f ixed sca le  and f i e l d  of t h e  image, proposals have been made 
f o r  using aerial  photographic equipment i n s t a l l e d  i n  satell i tes with a c i r c u l a r  
o rb i t .  I n  this case, t h e  camera toge ther  with the  standard cartographic 
l ens  used i n  t h e  United S ta t e s  (camera constant f = 130 m, viewing angle -60 T 
when at  an a l t i t u d e  of 5200 km ( o r b i t a l  period of t h e  satel l i te  hr )  can en
compass an area of 8200 x 8200 km on t h e  planet ' s  surface for a v e r t i c a l  s ca l e  
of m = l:40yOOOyOO0 [format of photograph 22.5 x 22.5 cm (Bib1.16)l. The photo
graph thus obtained would encompass a p a r t  of t h e  terrestrial globe roughly 
equal i n  area t o  t h a t  of t h e  standard synoptic char t .  

The equator ia l  spacing of t h e  successive o r b i t s  of this satel l i te  would be 
approximately 5400 km, w h i l e  at  t h e  l a t i t u d e  of 4.9 this spacing would be ap
proximately 4000 km. Hence, g loba l  photographing with some overlapping of 
photographs for t h e  exposure in te rva l  t = 10 - 15  min can be readi ly  accom
plished. This,makes poss ib le  t h e  on-sa te l l i t e  processing of photographs and 
t h e i r  transmission via a radio channel. 

When t h e  resolving power of t h e  aerial camera i s  50 l i n e s  p e r  m, the  
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resolving power wi th  respect t o  t h e  photographed area i s  -800 m. 

Sec t ion  2. 	 Basic Parameters and Charac te r i s t i c s  of 
Photographic Instruments 

The basic parameters of aerial cameras rendering them suitable f o r  t h e  
conduct of various inves t iga t ions  are: t h e  camera constant f ,  t h e  angle of v i e w  
wSteror cyo (or, sometimes, t h e  coverage angle of t h e  lens ,  characterizing an 
image with m i n i m a l  l e n s  aber ra t ions) ,  t h e  resolving power N&.,,.at t h e  center  and 
on t h e  edge of t h e  f i e l d  of view, t h e  l e n s  speed, and t h e  format of t h e  photos. 

A s  we can see, t h e  p r i n c i p a l  parameters of t h e  camera are determined by a 
combination of t h e  p rope r t i e s  and c h a r a c t e r i s t i c s  of t h e  l e n s  and of t h e  photo
graphic material used. 

The lenses  used i n  aerial cameras are t h e  most important p a r t  of t hese  
cameras and are characterized by: t h e  camera constant f ,  t h e  relative aper ture  
d/f, t h e  f i e l d  of v i e w  cy, t h e  l e n s  speed, and t h e  l e n s  resolving power Nd .  

The lenses  are divided i n t o  wide-angle (cy > 70°, f 135 mm),medium-angle 
(70' 2 cy 2 50") and narrow-angle (cy < 50 , f > 300 mm) l enses ,  depending on t h e  
width of t h e  angle cy (Bibl.44). 

Another important i n d i c a t o r  of t h e  l e n s  qua l i t y  i s  t h e  aber ra t ions .  They 
usua l ly  are corrected ( ch ie f ly  i n  t h e  c e n t r a l  p a r t  of t h e  f i e l d  of view) by 
s e l e c t i n  various types of g l a s s  with various r a d i i  of t h e  surface curvature 
(Bib1.127. The aber ra t ions  are characterized by t h e  diameter of t h e  c i r c l e  of 
confusion i n  t h e  image of a po in t  source. The magnitude of t h e  c i r c l e  of con
fus ion  decreases with i r i s i n g  of t h e  l e n s  owing t o  t h e  decrease i n  broad-beam 
aber ra t ions(spher ica l ,  coma and astigmatism). Coating t h e  op t i c s  makes it pos
s i b l e  t o  r e a t l y  enhance t h e  t ransmiss iv i ty  P& of t h e  l e n s  [ t o  0.7 and higher 
(Bibl.12) 4. 

In s c i e n t i f i c  photography, a n  important c h a r a c t e r i s t i c  of t h e  l e n s  i s  (299
i t s  d i s t o r t i o n  as manifested i n  v i o l a t i o n  of t h e  geometric s i m i l a r i t y  between 
t h e  contour of an objec t  and i t s  image. 

The a b i l i t y  of t h e  l e n s  t o  produce s u f f i c i e n t  image i l lumina t ion  i s  termed 
t h e  l e n s  speed. The i l lumina t ion  i n  t h e  c e n t r a l  p a r t  of t h e  f i e l d  of t h e  image 
of a d i s t a n t  ( H  B f ) ,  i d e a l l y  d i f fus ing ,  sur face  i s  

(2.XII) 


-
where p i s  t h e  mean r e f l e c t i o n  f a c t o r  of t h e  sur face  of t h e  observed objec t ;  B 
and E are t h e  brightness and i l lumina t ion  of t h e  observed surface (normal t o  t h e  

2
7T
solar rays);  z i s  t h e  zeni th  angle of t h e  sun; w = (-$) i s  t h e  s o l i d  angle 
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of v i e w  of t h e  l e n s  ( f o r  H 9 f ) ;  Po and P a  are t h e  t r ansmiss iv i t i e s  of t h e  op t i c s  
and t h e  atmosphere. 

Note t h a t  t h e  i l lumina t ion  decreases i n  t h e  d i r e c t i o n  toward t h e  image edge 
owing t o  t h e  i n c l i n a t i o n  of rays t o  t h e  l e n s  p lane  by t h e  angle y [roughly pro
por t iona l  t o  cos" y (B ib l . l l ) ] .  

In accordance with eq.(2.XII), t h e  l e n s  speed i s  characterized by t h e  square 
2 

of t h e  relative l e n s  aper ture  6 = (+) . Such a l e n s  speed (taken without 

making any allowance f o r  t h e  a t t enua t ion  of t h e  rad ian t  energy) i s  termed geo

f d  \ 

metric. Lenses with a high geometric speed (-f 2 1:2.5) are termed fast lenses.  

The l e n s  speed can increase  only wi th in  narrow limits. I n  f a c t ,  i f  = 1, z = 

= 0", Po = P a  = 1and d 
= 1:0.5, then  t h e  image i l lumina t ion  w i l l  equal t h e  

surface i l lumination (or t h e  luminous emittance) Ei = E. 

Owing t o  thermodynamic considerations,  any f u r t h e r  increase  i n  l e E s  speed 
i s  not f eas ib l e .  I n  p r a c t i c e  l enses  with a relative aper ture  of only 0 = L0.6 
can be made, but t h e i r  an l e  of v i e w  i s  extremely s m a l l  and t h e i r  aber ra t ions  
are considerable (Bibl.11 7. I n  t h e  b e s t  lenses,  t h e  re la t ignship  between rela
t ive aper ture  and maximum angle of v i e w  i s  as follows: f o r  0 = 1:0.8, a 5 19; 
f o r  6 = 1:1.5, cy 30"; and f o r  8 = 1:8, a 5 120" (Bib1.11). Using extremely /300 
fast lenses  i s  o f t en  inconvenient, because, owing t o  t h e  l a r g e  number of lenses  
involved, t ransmiss iv i ty  Po i s  l imi ted .  

To a l t e r  t h e  image i l lumina t ion ,  t h e  aper ture  diaphragm i n  t h e  l enses  of 
photographic and t e l e v i s i o n  pickup cameras i s  of t h e  var iab le  kind. 

The resolving power Na of a l e n s  charac te r izes  i t s  a b i l i t y  t o  separa te ly  
depict  minor d e t a i l s  6 of t h e  objec t .  It i s  determined by t h e  number of l i n e s  
or s t rokes  N& separa te ly  depicted at  a d is tance  of 1" i n  t h e  image p lane  
( tak ing  i n t o  account t h e  l i n e s  and t h e  l i g h t  i n t e r v a l s  between them). The re
solving power i s  l imi ted  by t h e  aber ra t ions  ( c i r c l e  of confusion 6' ) and d i f f r ac 
t i o n  of a lens .  In an i d e a l  (aberration-free) l ens ,  t he  resolving power N L  = 

= 2,determined according t o  Rayleigh's d i f f r a c t i o n  condition (Bibl.11) i s  
6' 

where h i s  t h e  wavelength of t h e  monochromatic l i g h t .  

The resolving power, conditioned by aberrations,  decreases with increas ing  
r e l a t i v e  aper ture  d/f, s ince  then  t h e  aber ra t ions  increase  ( t h e  spher ica l  aber

r a t i o n  i s  propor t iona l  t o  (-$-)3; t h e  coma, t o  (-$-y; and t h e  astigmatism, t o  
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(d).
T h i s  accounts f o r  t h e  low resolving power of fast l enses  ( B i b l . 1 1 ,  12). 

The d i f f r a c t i o n  equation ( 3 . X I I )  app l i e s  completely only when 6 = 1:18 t o  
1:20 (Bibl.4). 

In p rac t i ce ,  t h e  resolving power of a l e n s  i s  determined w i t h  t h e  a i d  of 
various tests such as t h e  determination of t h e  d i s t ance  6 between t h e  centers  of 
t h e  s t i l l  d i sce rn ib l e  adjacent dark l i n e s  separated by br ight  i n t e r v a l s  of t h e  
same width. The resolving power i s  t h e  r ec ip roca l  of this quantity Na = 1/6. 

The real resolving power Nd at t h e  center  of t h e  f i e l d  of t h e  image i s  
lower than t h e  t h e o r e t i c a l  NL f o r  r e l a t i v e  aper tures  0 > 1:l8. Thus, f o r  0 = 
= 1:4.5 and A = 0.555 IJ.,from eq.(3.XII) we have N k  = 400 l i n e s / m ,  whereas t h e  
ac tua l ly  determined r e so lu t ion  N t  f o r  such a l e n s  i s  -300 lines/mm (Bibl.11). 
The resolving power of t h e  l enses  of ordinary cameras does not exceed 
45 lines/" a t  t h e  center  of t h e  f i e l d  of image and 33 lines/" a t  t h e  edges / 3 O l  
(Bibl.15). The resolving power of t h e  unaided eye varies from 5 t o  10 lines/" 
depending on t h e  manner of i t s  determination (Bib1 .1 ,  11). 

O f  major s ign i f icance  t o  photographic and t e l e v i s i o n  lenses  i s  t h e  depth of 
de f in i t i on ,  i.e., t h e i r  a b i l i t y  t o  produce a s u f f i c i e n t l y  sharp image of ob jec ts  
located a t  various d is tances  from t h e  lens .  It i s  expressed by t h e  length ( i n  
meters) of a s u f f i c i e n t l y  sharp image of t h e  t e r r a i n  space DD on both s ides  of 
t h e  focusing plane. The depth of t h e  d e f i n i t i o n  DD depends on t h e  r e l a t i v e  
aper ture  of t h e  lens,  t h e  d is tance  t o  t h e  objec t  of focusing, and t h e  degree of 
i r i s i n g  of t h e  l e n s  (Bibl.7, 15) .  In order t o  increase  t h e  depth of de f in i t i on ,  
t h e  diaphragm must be reduced. 

Photographic f i lms  of various width are used as t h e  negative mater ia l s .  
They may cons i s t  of n i t r o c e l l u l o s e  or t r i a c e t a t e  as t h e  base, a bonding l aye r  of 
sodium s i l i c i d e ,  and an aqueous so lu t ion  of g e l a t i n  containing a s i l v e r  ha l ide  
i n  t h e  suspended state. Such a (non-sensitized) emulsion i s  s e n s i t i v e  t o  radi
an t  energy wi th in  t h e  range of roughly 0.28 t o  0.5. P, with a maximum a t  4 - 3 6  IJ. 
( a  g l a s s  lens does not t ransmi t  rays b e l o w 4 . 3 3  IJ. (Bibl.1). S e n s i t i v i t y  t o  
longer wavelengths i s  enhanced by adding organic dyes which s e n s i t i z e  t h e  f i l m  
t o  t h e  rays being absorbed by such s e n s i t i z e r s .  Thus, panchromatic (a l l -co lor )  
f i lms  are obtained. The s e n s i t i v i t y  of t hese  films i s  v i r t u a l l y  constant over 
t h e  s p e c t r a l  range of 0.28 t o  0.7 p. The g r e a t e s t  i n f r a red  l i m i t  of s p e c t r a l  
s e n s i t i v i t y  (up t o  0.85 IJ. and more) i s  displayed by infrachromatic f i lms  
(Bib1.15). 

The bas ic  c h a r a c t e r i s t i c s  of t h e  photo raphic material ( con t r a s t  fac tor ,  
s e n s i t i v i t y ,  range of density,  inherent fog7 are determined from t h e  character
i s t i c  darkening curve as a func t ion  of t h e  i l lumina t ion  (Bibl.8). 

The s e n s i t i v i t y  of t h e  f i l m  i s  t h e  r ec ip roca l  of tlie amount of i l lumination, 
c rea t ing  a spec i f ied  photographic e f f e c t  on t h e  photographic material ( a f t e r  de
velopment). Usually (Bibl.8, 15),  t h e  c r i t e r i o n  applied i s  t h e  po in t  on t h e  
c h a r a c t e r i s t i c  curve a t  which t h e  fog level (darkening of t h e  photographic l a y e r  
i n  areas not exposed t o  t h e  ac t ion  of l i g h t )  i s  exceeded by 0.85. I n  such a 
system, t h e  adopted unit of s e n s i t i v i t y  i s  t h e  s e n s i t i v i t y  of a material which, 
on t h e  exposure of Eit, = 10 lux-sec,  y i e l d s  t h e  o p t i c a l  dens i ty  D equal t o  
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D =Do+0.85, 

where Do i s  t h e  fog density.  

The s e n s i t i v i t y  Sdass of any layer i s  expressed i n  degrees according t o  /302 
t h e  equation 

The s e n s i t i v i t y  of ordinary aerial hotographic materials ranges from 
hundreds t o  thousands of degrees (Bibl.8 P . 

The exposure required f o r  hotographing with a f i l m  of known s e n s i t i v i t y  
Sd0.8 5 i s  according t o  eq.(2.XII P determined by t h e  r e l a t i o n  

(6 .XII) 

where k i s  a coef.ficient which takes  i n t o  account t h e  e f f e c t  on exposure of t h e  
a t tenuat ion  of l i g h t  by t h e  atmosphere and camera opt ics ,  as w e l l  as t h e  s h u t t e r  
efficiency, t h e  reduction by f i l t e r ,  and t h e  d i f f u s i o n  of l i g h t  by p a r t s  of t h e  
aerial camera which r e s u l t s  i n  an  add i t iona l  i l lumina t ion  of t h e  film. 

For example, f o r  t h e  i l lumina t ion  E = 5000 lux f o r  an aerial camera w i t h  
-

k = 0.50 (without a f i l t e r ) ,  p = 0.15 and -
d 
f = 4.5 (Bibl.8). The required 

normal exposure t, i s  0.01 sec f o r  photographing on a f i l m  with t h e  s e n s i t i v i t y
sQ.8s = 200° . 

The resolving power Nph of t h e  photographic fi lm, i n  lines/", i s  of s p e c i a l  
s ign i f icance  i n  large-scale photography which employs p ro jec t ive  p r i n t i n g  with 
magnification. The extent of NPh i s  c lose ly  r e l a t e d  t o  t h e  film s e n s i t i v i t y ,  
t h e  g ra in  of t h e  layer ,  and t h e  photographing conditions. Considerable resolv
ing  power (100 Lines/" and higher) i s  displayed by low-sensit ivity p o s i t i v e  
materials. With t h e  increase  i n  exposure time or i n  developing t i m e ,  and hence 
a l s o  i n  t h e  dens i ty  of t h e  obtained image, t h e  r e so lu t ion  of t h e  film increases  

t o  a spec i f ied  maximum. 

I n  conventional aerial  photography, f i lms  wi th  t h e  r e so lu t ion  Nph = 35 
- 50 lines/" or 6 = 0.02 - 0.03 m between t h e  l i n e s  are used (Bibl.15). 

The resolving power NkPh, of t h e  lens-photographic material system i s  always 
subs t an t i a l ly  smaller than  ' the resolving power of t h e  components N& and Nph . 
Between these  an approximate r e l a t ionsh ip  exists, expressed by 

It follows from eq.(7.XII) t h a t ,  given equal r e so lu t ion  of each component, 
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N 4  = Nph = N, t h e  r e so lu t ion  of t h e  s y s t e m  i s  ha l f  as high, NtPh. = -1 
2 

N. /303 

Moreover, t h e  high resolving power of one component of t h e  system may not be 
ac tua l ly  a t t a ined  i f  t h e  o the r  component has a l o w  resolving power. For example, 
f o r  N& = 300 lines/" and Nph = 50 lines/", w e  have N b h .  = 43 lines/". 

The terrain-resolving power Ngph.of t h e  system, characterized by t h e  least 
dimension A of t h e  d i sce rn ib l e  d e t a i l ,  i s  expressed by t h e  r e l a t i o n  

A =  1 - H 
"&.ph. fNd.ph. ' (8.XII) 

where m i s  t h e  s c a l e  of t h e  photo and H i s  t h e  photographic a l t i t u d e .  

Using eq.(8.XII) with respect t o  t h e  American camera with t h e  camera con
s t a n t  f = 130 mm mounted i n  a c i r cu la rco rb i t  sa te l l i te  with H = 5200 km (m = 
= 1:4 x io7), we obta in  a t e r r a i n  r e so lu t ion  A = 800 m f o r  N&,,h. = 50 lines/", 
as was pointed out earlier ( c f .  Sect.1 of this chapter).  

It must be noted, however, t h a t  some margin i s  necessary, s ince  t h e  real 
reso lu t ion  of a photograph depends on t h e  displacement of t h e  image during ex
posure, owing t o  t h e  motion of t h e  c a r r i e r ,  degree of l eve l ing  of t h e  film, and 
o ther  f a c t o r s  (Bibl.?) 

O f  major s ign i f icance  a l s o  are t h e  operations involved i n  t h e  photographic 
processing of t h e  material i n  f l i g h t  o r  following i t s  r e c v t i o n  on earth.  

The e f f e c t  of meteorological conditions i s  expressed i n  the  dependence of 
i l lumina t ion  E on t h e  p o s i t i o n  of t h e  sun, t h e  cloud conditions, t h e  degree of 
haze, and t h e  quantity Pa enter ing  i n t o  eqs.(2.XII) and (6.XII). The brightness 
& of t h e  aerial haze l eads  t o  t h e  loss  of image con t r a s t .  

T h i s  e f f e c t  of haze i s  o f f s e t  by using co lo r  . f i l ters which cut off t h e  
shortwave po r t ion  of t h e  spectrum conditioned by t h e  molecular s ca t t e r ing  
(Bib1.1). Thus, image i l lurnination does not decrease markedly i f  t h e  sun i s  
su f f i c i en t ly  high above t h e  horizon (when t h e  sun i s  30' above t h e  horizon, il
lumination by sca t t e red  l i g h t  does not exceed 25% of t h e  d i r e c t  s o l a r  i l l m i n a  
t ion) (Bib l . l ,  12). Films i n s e n s i t i v e  t o  t h e  shortwave po r t ion  of t h e  v i s i b l e  
region of t h e  spectrum may a l s o  be used f o r  this purpose. 

Section 3. 	Requirements f o r  t h e  Image Sharpness and t h e  
Camera Resolving Powr 

The p o s s i b i l i t y  of discerning minor objec ts  o r  d e t a i l s  of ob jec ts  on a 
photograph i s  determined by t h e  sha ness with which t h e  boundaries of objec ts  
are imprinted ( d e t a i l  of . Image sharpness i s  determined by t h e  
following bas ic  fac tors :  

by t h e  resolving power NtBh. of t h e  system; 

by t h e  cont ras t  K between t h e  de tec tab le  d e t a i l s  and t h e i r  background

/3ok 

on t h e  fi lm; 
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by t h e  displacement of t h e  object  of t h e  photograph du r i  exposure,
causing t h e  b lur r ing  of boundaries on t h e  image (crabbiw?; 
by t h e  proper t ies  and shape of t h e  photographed object .  

The discernment of various objec ts  by t h e  eye i s  determined by t h e i r  rela, 
t i v e  contrast  K i n  brightness with t h e  background. I n  observations over consid
erab le  dis tances  or i n  the  presence of a turb id  atmosphere, t h e  v i s i b l e  contrast  
K' decreases owing t o  t h e  superposit ion of t h e  br ightness  of haze Bh on t h e  ap
parent brightness Bob of t h e  object  and t h e  apparent br ightness  Bb of t h e  back
ground. For a br ight  object  (Bob > B b )  we have, i n  accordance i r i th  t h e  known 
equation (Bibl.12) 

The threshold cont ras t  f o r  t h e  eye i s  approximately 0.02 or 2%, at  observa
t i o n s  under daylight conditions. A t  night and i n  twi l igh t  this cont ras t  in
creases (Bibl.12). 

From eq.(9.XII) it can be seen t h a t  i n  t h e  presence of haze or fog an t h e  
image, t h e  v i s i b l e  contrast  K' between d e t a i l  and t h e  background, or between an 
object and the  background, will decrease and this Will lead t o  a corresponding 
decrease i n  image sharpness and i n  t h e  d i s c e r n i b i l i t y  of d e t a i l s  of t h e  image. 
T h i s  i s  re f lec ted  i n  a decrease i n  t h e  real resolving power N h h .  of t h e  s y s t e m ,  
as compared with i t s  ra ted  N&.ph.r. which i s  determined i n  laboratory conditions 
for t h e  contrast  K = 1 ( a t  Bh = 0) on t h e  bas i s  of a s ta t ionary  test .  It i s  f o r  
this reason t h a t  photography under real conditions requires a c e r t a i n  margin of 
reso lu t ion  . 

The informational value of photographs of moving objec ts  i s  markedly re
duced by b lur r ing  during exposure, due t o  t h e  displacement of pro jec t ive  l i nes .  

During photographing from a non-stabilized objec t  i n  motion, six displace
ments a r e  possible ,  corresponding t o  six degrees of freedom of t h e  camera: 
l i n e a r  displacements as well as revolution about t h ree  axes per ta in ing  t o  t h e  
center  of grav i ty  of t h e  camera. However, a l l  t hese  displacements, except t h e  
displacement per ta ining t o  t h e  l i n e a r  movement along t h e  t r a j ec to ry ,  may be re
duced t o  a m i n i m u m  by s t a b i l i z i n g  t h e  ca r r i e r .  

For a camera moving i n  t h e  f l i g h t  plane at  t h e  rate v' , t h e  po in t s  of ter
r a i n  projected onto t h e  sens i t i ve  l aye r  ge t  displaced with respect  t o  this l aye r  
a t  t h e  rate vi equal t o  

V i  =mu', (lO.XI1) 

where m i s  the  sca le  of t h e  photos taken. 

Hence, during t h e  exposure t, , t h e  p ro jec t ive  l i n e s  Will be displaced, /305 
e.g., from poin t  O1 (Fig.3.XII) t o  po in t  0: ( i n  t h e  d i r ec t ion  of t r a v e l  of t h e  
c a r r i e r ) .  The unsharpness of t h e  r e su l t i ng  image, as conditioned by this dis
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placement, w i l l  be, as Fig.3.XII o r  e q . ( l O . X I I )  show, 

The t e r r a i n  displacement w i l l  be 

(12. X I I )  

Thus, t h e  displacement due t o  t h e  l i n e a r  movement of t h e  camera i n  t h e  
f l i g h t  p lane  i s  determined by t h e  rate of motion of t h e  c a r r i e r  with respect t o  
t h e  photographed objec t  and by t h e  exposure t h e .  It i s  i d e n t i c a l  f o r  a l l  of t h e  
image poin ts .  For example, i f  t, = sec and v' = 3000 h / h r  = 830 m/sec, 
t he  t e r r a i n  displacement Wi.11 be A = 8 m and t h e  image unsharpness 6 = 0.8 m 
f o r  m = 1:10,000. The a c t u a l  image unsharpness wil l ,  however, be somewhat 
smaller than  i t s  geometric value spec i f ied  above, because t h e  rate of photo

(Bibl.5, "pr i n t i n g  a t  t h e  commencement of exposure i s  faster than a@i ts  end 
6 . 

y p  
s,  --7T 

Fig.3.XII Displacement (Crabbing) of t h e  Image due t o  
Rec t i l i nea r  Movement of t h e  Camera during t h e  Exposure. 

The permissible unsharpness (crabbing) 6' obviously varies depending on t h e  
purpose of t h e  photography and t h e  dimensions of t h e  t e r r a i n  d e t a i l s  A' subjec t  
t o  i d e n t i f i c a t i o n  and r e l a t e d  t o  t h e  s c a l e  of t h e  photography by eq.(l2.XII). 
Thus, e.g., i f  t h e  objec t  of photography i s  altocumulus clouds whose character
i s t i c  d e t a i l s  are of t h e  dimension A: = 5 my then, f o r  t h e  s c a l e  of photography 
m = 1:100,000 = t h e  permissible unsharpness of boundaries on the  photo
graphs should be not more than  6: = 0.05 mm, and f o r  m = lom3 not more than  5 mm. 

The resolving power Noh. of t h e  system must correspond t o  t h e  required de
ta i l  of t h e  photograph. To assure t h e  discrimination of l i n e a r  elements of t h e  
dimension 6' , and as i n p l i e d  by t h e  foregoing ( c f .  Sect .2), this resolving power 
must be 

(13. X I I )  

From eq.(l3.XII) it can be seen t h a t  t h e  assurance of a high d e t a i l  of 
photographs requires t h e  use of long-focus cameras with a narrow angle of view.  
Thus, t o  obta in  t h e  l i n e  reso lu t ion  of t h e  t e r r a i n  with A' = 5 m from t h e  1306 
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a l t i t u d e  H = 200 km by means of a system with t h e  reso lu t ion  N A ~ ~ ,= 20 lines/" 
(without taking i n t o  account t h e  atmospheric inf luences) ,  a camera with t h e  
camera constant f 2 2000 m i s  required. The dimensions of and weight of such 
lenses  are very considerable (even i f  telephoto lenses  are used). Thus, f o r  
8 = 1:4 t h e  l ens  diameter i n  t h e  example considered above must be 500 mm and t h e  
weight of t h e  l ens  must be about 100 kg. 

Section 4. Photographing f rom Ob,iects i n  Outer %ace 

An outstanding achievement of Soviet s c i e n t i s t s  was t he  photographing of 
t h e  far s ide  of t h e  moon, accomplished with t h e  a i d  of instrument i n s t a l l e d  i n  
t h e  third cosmic rocket (4  Oct, 1959). T h i s  experiment opened up a new domain 
of astronomical observations of t h e  p lane ts  from spacecraft .  The obtained image 
was developed i n  the  instrument container and transmitted t o  ea r th  by a televi
sion-type system. Thus, this instrument i s  of t h e  phototelevision type. 

The moon was photographed with t h e  a id  of a camera with two lenses  [fi = 
= 200 mm and fi = 500 mm (Bibl. l3)]  with r e l a t i v e  apertures  1:5.6 and 1:9.5. 

A t  t h e  photographing dis tance (from 65,200 km a t  t h e  beginning of i t s  opera
t i o n  t o  68,400 k m  a t  t h e  end)(Bibl.3), t h e  first l e n s  provided an image of t h e  
lunar  d i sk  completely encompassed within t h e  frame, w h i l e  t h e  second assured ob
ta in ing  large-scale images of p a r t  of t h e  lunar  surface.  

The o r i en ta t ion  of t h e  camera toward t h e  moon was accomplished by an or ien ta
t i o n  system which ro ta ted  t h e  e n t i r e  spacecraft .  Medium-sensitivity 35 mm 
photographic film, distinguished by i t s  high resolving power and heat res is tance,  
was used (Bibl.2). 

Considering t h a t  one of t h e  main a i m s  of this p ro jec t  was t o  obtain d e t a i l s  
of t h e  photographed object ,  spec ia l  a t t e n t i o n  was devoted t o  assuring a suf f i 
c i en t ly  high r e su l t an t  cont ras t  f a c t o r  y r ,  which i n  this case equals 

where Y ~ . ~ , ,ys.l., ye.i., ye.n., and ypos.denote, respectively,  t h e  cont ras t  f a c t o r s  of 
t h e  negative i n  t h e  spacecraft ,  t h e  image t ransmit ted from t h e  spacecraft ,  t h e  
image received on ear th ,  t h e  ground negative, and t h e  pos i t i ve  copy subject  t o  
s c i e n t i f i c  analysis .  

The required ye.n.was found t o  be of t h e  order of 0.7 (Bibl.2). Calculations 
of t h e  fog due t o  cosmic rad ia t ion  i n  t h e  presence of a quiet sun showed t h a t  in 
this case t h e  noise  i s  ins ign i f i can t ,  whereas a solar flare may lead t o  a sharp 
increase i n  t h e  fog on t h e  f i l m  (Bibl.2). 

The photographing was performed on va-ng t h e  frame exposure time so as /307 
t o  obtain negatives with optimal dens i t i e s  and it l a s t e d  f o r  about 4.0 min, during 
which time the  moon was repeatedly photographed (Bibl.13). 

After photographing, t h e  f i lm  entered an automatic developing device oper
a t ing  under conditions of weightlessness and over a broad range of temperatures, 
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with a f ixed film-processing t h e .  

A schematic diagram of a model of t h e  compact (-10 cm t a l l )  (Bibl.2) de
veloping device ca r r i ed  by t h e  spacecraft  i s  shown i n  Fig.4.XII. The exposed 

Fig.4.XII Diagram of t h e  Spacecraft-Borne Device 
for Processing a Heat-Resistant Film. 

f i lm 1entering t h e  developing device via t h e  e l a s t i c  sponges 2 proceeds t o  t h e  
tank 3 ,  where it i s  simultaneously developed and f ixed.  After passage through 

R TS 
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Fig.5.XII Diagram of t h e  Rocket-Borne 
Panoramic Camera (FAKO) 

t h e  squeegee element 4, it i s  r insed i n  t h e  tank 5, again squeegeed i n  t h e  ele
ment 6 and passed via elastic sponges t o  t h e  hot drum 7, which it leaves com
p l e t e l y  dried.  Heating elements maintaining a f ixed temperature during t h e  
processing of t h e  f i l m  are placed i n  t h e  space between t h e  tanks 3 and 5. The 
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processed and dr ied f i lm  proceeds t o  a magazine whence it proceeds t o  an image-
transmit t ing device. 

Transmission of t h e  images was ca r r i ed  out  on in s t ruc t ions  from ea r th  over 
dis tances  exceeding severa l  hundreds of thousands of kilometers [as much as /308
470,000 km (Bib1.13)l. The conversion of t h e  negative image on t h e  photographic 
f i lm t o  t h e  e l e c t r i c  s igna ls  was accomplished i n  t h e  same manner as t h a t  i n  
which a motion p i c tu re  i s  transmitted by te lev is ion .  The slowly moving f i l m  was 
i l l m i n a t e d  with a br ight  beam projected onto it by an o p t i c a l  s y s t e m .  The beam, 
produced by a compact cathode-ray tube, t raveled from one edge of t h e  f i l m  t o  
another, thus causing l i n e  scanning. The beam passing through the  f i l m  was di
rected toward a photomultiplier which converted l i g h t  s igna ls  t o  t h e  e l e c t r i c  
s ignals .  The amplif icat ion and shaping of t h e  image s igna ls  were accomplished 
by means of a spec ia l  narrow-band s t a b i l i z e d  amplifier. 

The scheme included t h e  automatic regulat ion of t h e  amplif icat ion and 
brightness of t h e  exploring beam as w e l l  as t h e  provis ion of timing s igna ls  
(Bibl.13). The number of l i n e s  p e r  frame varied, depending on the  selected 
regime of transmission. A t  i t s  maximum i t  reached 1000 l i n e s  p e r  frame. 

The images .from t h e  spacecraf t  were  t ransmit ted by a rad io  comunications 
l i n e  which a t  t h e  same time served t o  measure t h e  parameters of t h e  movement of 
t h e  spacecraft  i t se l f  (Bibl.3, 13). 

Upper-air o p t i c a l  s t a t i o n s  (VOS), launched with t h e  a i d  of geophysical
rockets ( c f .  Chapt.I), use spec ia l  s l i t - t ype  panoramic FAKO cameras f o r  t h e  
cont ro l  observations of t h e  form and nature  of t h e  ear th 's  d i s k  observed by t h e  
scanning instruments (Bibl.9). 

The FAKO camera (Fig.5.XII) has a mobile lens 1with a s l i t  posit ioned a t  
r igh t  angles t o  t h e  d i r ec t ion  of spin.  Its anastigmatic l e n s  has t h e  f o c a l  
length f = 1.25 cm and t h e  r e l a t i v e  aperture  1:1.9. The 16 mm photographic f i lm  
i s  reeled around t h e  drum 2 whence i t  proceeds t o  receiving spool 3. Rotating 
t h e  o p t i c a l  head 5 i s  actuated by means of t h e  motor 7 and t h e  reducing gear 4. 
The ro t a t ion  of t h e  l ens  i s  control led by t h e  contact mechanism 6. The power P 
i s  supplied t o  t h e  plug-type connector 8 of t h e  instrument, and t h e  information 
on t h e  pos i t ion  of t h e  l ens  i s  transmitted by t h e  telemetering system. 

When i n  operation, t h e  FAKO camera continuously photographs a 360' panorama 
with a 1-sec period. 

iCHAPTER X I 1 1  

TELEVISION EQUIPMENT 

Section 1. Basic Pr inc ip les  of Television 

Modern t e l ev i s ion  i s . o n e  of t h e  most i n t e r e s t i n g  and rap id ly  developing 
f i e l d s  of sciences and engineering. Television systems, which g rea t ly  expand 
t h e  p o s s i b i l i t i e s  f o r  t he  observation of various processes, f i n d  broad and /309 
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varied appl icat ion.  By now they are playing an important r o l e  a l s o  i n  t h e  ex
p lo ra t ion  of space. Television has found p r a c t i c a l  appl ica t ion  i n  observations 
of manned spacef l igh ts  (which are access ib le  t o  mi l l ions  of TV v i e w e r s )  as well 
as i n  observations of t h e  cloud, i c e  and snow cover of t h e  ear th 's  surface which 
are systematical ly  conducted i n  t h e  United States w i t h  t h e  a id  of t h e  Tiros  
weather satellites. A s  was pointed out above ( c f .  Sect .4,Chapt . X I I ) ,  t h e  photo-
t e l ev i s ion  method was employed t o  t ransmit  images of t h e  far  s ide  of t h e  moon 
from the  T h i r d  Space Rocket. 

Clearly, even more i n t e r e s t i n g  r e s u l t s  will be obtained from t e l e v i s i o n  ob
servat ions of t h e  surfaces  of t h e  moon and t h e  p l ane t s  and pr imari ly  of Mars and 
Venus (Bibl.3).  Televis ion systems may be used t o  o r i e n t  o p t i c a l  instruments 
(Bib1.22), t o  monitor t he  performance of various equipment, e t c .  

The f i n a l  element receiving t h e  image reproduced by t e l ev i s ion  instruments 
i s  the  eye of t h e  observer. Hence, t h e  basic  c h a r a c t e r i s t i c s  of t h i s  instrument 
are selected t o  take into account the  fea tures  of human vision: a l imited re
solving power and i n e r t i a  of t h e  Visual perception. 

The resolving power of t h e  average eye i n  t h e  presence of s a t i s f ac to ry  il
lumination (20 - 40 n i t )  and maximum contrast  ( K  = l) averages 5 - 10 lines/mm, 
as was pointed out i n  Section 2 of Chapter X I I .  

The i n e r t i a  of vis ion,  due t o  t h e  f i n i t e  speed of photochemical reac t ions  
i n  the  optic-nerve endings, i s  characterized by the  time constant 7 = 0.1 sec 
(Bibl.7, 9).
f r e e  source with the  pulse  t i m e  4.7 = 0.4. sec, t he  v i sua l  perception of the  

Hence, given t h e  pulsed character  of t he  bu r s t s  of an i n e r t i a -

br ightness  B, can be depicted by the  convoluted curve 1i n  Fig.l.XII1. 
curve of t h e  apparellt br ightness  Ba contains,  as is shown, i n  addi t ion  t o  t h e  

T h i s  

constant component B, ex is t ing  a t  the  l e v e l  of t h e  mean t r u e  br ightness  By which 
i s  a l s o  a var iab le  component. T h i s  var iab le  component causes t h e  unpleasant 
sensation of f l i c k e r  and fa t igues  t h e  observer. 

6% 

A 

Fig.l.XII1 Response of the  &e t o  Pulsed Visual Stimulation. 

A s  t he  frequency of l i g h t  pu lses  of t h e  same amplitude i s  increased, e.g., 
doubled (curve 2) ,  t h e  mean B, p e r s i s t s  a t  t he  l e v e l  of t he  constant component, 
but  the  amplitude of t h e  var iab le  component, AB, markedly decreases owing t o  the  
i n e r t i a  of t h e  sensor. Given a c e r t a i n  c r i t i c a l ( w i t h  respect t o  a given average

Ex-
background br ightness)  pu lse  frequency, t h e  f l i c k e r  will be unnoticeable. 
perimental f indings (Fig.2.XIII) show t h a t  f o r  a mean br ightness  of 30 n i t  
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( average brightness of t h e  ordinary t e l e v i s i o n  screen), t h e  c r i t i c a l  f l i c k e r  
frequency n i s  approximately 30 cps, whereas f o r  a mean brightness of s eve ra l  
hundred n i t  t h e  f l i c k e r  becomes unnotic'eable on ly  at frequencies of-50 cps and 
higher (Bibl. 20). 

R 

loL,0 
0,l 1 10 100 1000100008n i t  

Fig.2.XIII C r i t i c a l  F l icker  Frequency n as a Function 
OX' t h e  Brightness B of t h e  Picture-Tube Screen. 

Transmission of images by t e l e v i s i o n  i s  accomplished by a system whose 
simplified block diagram i s  shown i n  Fig.3.XIII. The image of t h e  transmitted 
object,  projected by a l e n s  onto t h e  pickup tube, i s  scanned by t h e  l a t te r  and 
converted t o  a sequence of s igna ls .  The scanning process cons i s t s  i n  t h a t  t h e  
image plane x, y (Fig.4.XIII) i s  scanned i n  a d e f i n i t e  sequence by a commutating 
e lec t ron  beam def lec ted  by t h e  e l e c t r i c a l ' o r  magnetic f i e l d  of t h e  scanning 
system of t h e  pickup tube. Owing t o  scanning, t h e  sequence of mean p i c t u r e  
brightness elements on t h e  t ransmi t t ing  s ide  B (x, y, t )  i s  converted t o  a time 
sequence of e l e c t r i c  s igna l s  U ( t )  termed video s igna ls .  

4 7  

t r a n s - I m a g ecamera 

m i  t t e r  device 

Fig.3.XIII Block Diagram of t h e  Television S y s t e m .  

The d i f fe rences  i n  t h e  br ightness  of image scan elements correspond t o  dif
ferences i n  t h e  amplitude of t h e  video s igna ls ,  which i s  l imi ted  by t h e  levels 
of t h e  black ( t h e  darkes t )  and w h i t e  ( t h e  b r i g h t e s t )  elements. 

The video s igna l  has a constant component ( t h e  mean), whose level f depends 
on t h e  i l lumina t ion  of t h e  objec t  (Fig.5.XIII) and a va r i ab le  component which i s  
determined by t h e  configuration and d e t a i l  of t h e  transmitted image. 

The shape of t h e  video s igna l ,  received during t h e  transmission of t h e  /31l 
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image of a given object ,  does not change with va r i a t ion  i n  t h e  mean i l luminat ion 
within t h e  limits of t h e  tube sensit ivity.  Hence, t h e  basic  information on the  
transmitted image i s  car r ied  by the  var iab le  component U(t) of t h e  video s ignal ,  
which must be transmitted t o  t h e  receiving s ide  with a m i n i "  of d i s to r t ions .  

I------- * -? \ 
.a

t 
,
I
I z 

- .. c 
tl

I Ea 
Fig.4.XIII Raster Formation during Progressive Scanning. 

Following i t s  amplification, t he  video s igna l  proceeds t o  the  radio trans
mi t t e r  modulator, from where it i s  radiated by an antenna i n  the  form cf high-
frequency osc i l l a t ions .  

The received high-frequency osc i l l a t ions  en te r  a r ad io  receiver,  where they 
are amplified and detected.  After this they are ( i n  t h e  same sequence as on the  
t ransmit t ing s ide)  supplied t o  t h e  cathode-ray p i c t u r e  tube.  

The sequence of image scanning by t h e  scanning beam may be changed as de
s i red .  An elementary type of t e l ev i s ion  scanning i s  t h e  progressive scanning, 
where t h e  analyzing spot uniformly moves from l e f t  t o  r igh t  a t  t h e  r a t e  v, ( c f .  
Fig.&.XIII), while it a t  t h e  same time uniformly moves v e r t i c a l l y  a t  the  rate v, 
( then v, > vy ) . 

F'ig.5.XIII Diagram of t h e  Formation of a Video Signal. 

The t r a j ec to rg  of movement of t he  spot from t h e  left-hand edge of t h e  image 
t o  the  right-hand edge i s  a scan l i n e .  The inc l ina t ion  8 of the  l i n e s  with 
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respect t o  t h e  hor izonta l  i s  c l e a r l y  determined by t h e  r a t i o  between t h e  rates 
v, and v, . The complex whole of t h e  l i n e s  covering a s ing le  image (frame) i s  
termed raster. 

The t r a j e c t o r y  of t h e  rap id  r e tu rn  travel ( r e t r a c e )  of t h e  spot from t h e  
end of one l i n e  t o  t h e  beginning of t h e  next l i n e  i s  termed t h e  l i n e  re t race ,  
and from t h e  edge of t h e  image t o  t h e  commencement of scanning i s  ca l led  t h e  
frame re t race .  

The time required t o  scan t h e  e n t i r e  image and t o  r e t u r n  t h e  beam t o  i t s  /312 
o r i g i n a l  p o s i t i o n  i s  termed t h e  frame period Ti  and i t s  reciprocal,  t h e  frame 

frequency vf = -	1 . 
Ti 

The number of l i n e s  transmitted during one second ( tak ing  r e t r a c e s  i n t o  

account) i s  termed t h e  l i n e  frequency v, = -.	1 
T, 

The r a t i o  of frame period t o  l i n e  per iod  determines t h e  t o t a l  number of 
scan l i n e s  

(1. X I I I >  

The frame frequency vf and t h e  number z of scan l i n e s  are t h e  p r i n c i p a l  
parameters of t e l e v i s i o n  scanning. Note t h a t  i n  r e a l i t y  t h e  image i s  scanned 
only w h i l e  t h e  exploring element sweeps forward along t h e  l i n e  (1- cr)T,, w h i l e  
t h e  time CYT, must be expended on r e t r ac ing  t h e  l i n e .  T h i s  app l i e s  equally t o  
t h e  frame scanning, where t h e  r e t r a c e  time i s  BTf.  Hence, t h e  number of u se fu l ly  
scanned l i n e s ,  termed a c t i v e  l i n e s ,  i s  z,, = (1- B)z, and t h e  Bz l i n e s  do not 
p a r t i c i p a t e  i n  t h e  frame scanning. 

The standards adopted by t h e  t e l e v i s i o n  broadcasting systems i n  t h e  USSR 
and i n  t h e  United S t a t e s  (Bibl.18, 20) f i x  t h e  number z of scan l i n e s  a t  z = 
= 625; t h e  frame frequency vf = 25 cps; (Y = 18 and B = 0.08. Accordingly, t h e  
o the r  parameters of standard scanning are :  t h e  l i n e  frequency v, = zvf = 

= 15 625 cps; t h e  l i n e  period T, = --- 64 psec, and t h e  frame period Ti  = 
V, 

- - 40 msec. 
v f 

The frame r e p e t i t i o n  frequency vf = 25 cps causes, however, f l i c k e r  of t h e  
t e l e v i s i o n  image a t  t h e  receiving end, e spec ia l ly  i n  t h e  image h ighl ights  /313
where t h e  brightness may reach hundreds of n i t .  To eliminate this e f f ec t ,  which 
i s  fa t igu ing  t o  t h e  viewer, in t e r l aced  scanning i s  employed. I n  this case, t h e  
f l i c k e r  frequency of t h e  screen i s  doubled i n  comparison with progressive (paral
l e l  l i n e )  scanning, but t h e  frame r e p e t i t i o n  frequency v i  remains t h e  same. I n  
in t e r l aced  scanning, each frame i s  t ransmi t ted  twice ( i n  half-frames): t h e  first 
half-frame contains a l l  of t h e  even-numbered l i n e s  of t h e  raster and t h e  second 
has a l l  of t h e  odd-numbered l i n e s ,  as i s  shown i n  Fig.6.XIII. The r e t r a c e  pa ths  
are indica ted  by broken l i n e s .  The time diagrams of a raster with a sawtooth 
scanning p a t t e r n  are shown i n  t h e  upper p a r t  of t h e  i l l u s t r a t i o n .  
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The transmitted image i s  n o m a n y  of a rec tangular  shape. We w i l l  denote 

i t s  width by b and i t s  height by h. The r a t i o  -b 
h = k i s  termed t h e  image 

format 

cqecond ha1 f
frame frame 

UL 
Tt( ( c o m p l e t e  f r a m e )  

I c 
F i r s t  

frame .Cecond ha1 f - C o m p l e t e  
f rame 

Fig.6.XIII Formation of a Raster during In te r laced  Scanning. 

The p o s s i b i l i t y  of t ransmi t t ing  minute d e t a i l s  of an  image i s  l imi ted  by 
t h e  cross-sectional area 6 of t h e  e lec t ron  beam scanning t h e  image being trans
mitted. The quantity 6 ,  which determines t h e  dimension of t h e  scan element, i s  
r e l a t ed  t o  t h e  frame parameters 

h6 = - - .  (2 . X I I I )
z 

The t o t a l  number of elements of a frame of t h e  format k i s  

n =zkz  = kz?. (3.XIII) 

The transmission t i m e  T, p e r  element i s  determined by t h e  equation /31k 

(4- . X I I I )  

For t h e  standard scanning parameters spec i f i ed  above, T, = 7.8  x lo-' sec. 

For undistorted image transmission and assurance of t h e  same resolving 
power over t h e  height and t h e  width of t h e  frame, t h e  e l e c t r i c a l  t r a c t  of t h e  
t e l e v i s i o n  apparatus must pass  a d e f i n i t e  frequency band. 

On transmission of a monotonic image t h e  video s i g n a l  Will be per iodic ,  
with t h e  period a equal t o  t h e  frame r e p e t i t i o n  per iod  T i .  Hence, t h e  lower 
limit v m i n  of t h e  frequency band equals t h e  frame r e p e t i t i o n  frequency v m i n  = V i .  

To determine t h e  upper l i m i t  vmaX of t h e  band, assume t h a t  a checkerboard-
l i k e  image with t h e  maximum number of d i sce rn ib l e  p a r t s  of t h e  dimension 6 i s  
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being transmitted.  The r e p e t i t i o n  period of t h e  video s igns1  along a l i n e  i n  
this case w i l l  be equal t o  t h e  time 2T, of t h e  transmission of two image ele
ments (one black and one white), and t h e  ma;dmuum frequency W i l l  be according t o  
~~.( . !+.xIII)  

1 1 vmsx = 2T, --2 k 9 V f  . (5. X I I I )  

For standard scanning k = 4/3, and hence t h e  video-signal frequency band 
subjec t  t o  transmission Wi l l  be AV = VmaX - V m i n  = 6.5 mega-cps. Then t h e  
spectrum of t h e  video s igna l s  w i l l  contain low frequencies of t h e  order of t e n s  
of cps. 

I n  v i e w  of t h e  considerable t echn ica l  d i f f i c u l t i e s  involved i n  t ransmi t t ing  
a wide frequency band through a comunications channel, t h e  t e l e v i s i o n  standard 
has, as was  pointed out above, adopted in t e r l aced  scanning ( ins tead  of increas
i n g  t h e  frame frequency V f )  i n  order t o  increase  t h e  frame f l i c k e r  frequency. 

During transmission of r e l a t i v e l y  s t a t iona ry  images, t he  frame scanning 
period may be increased, which makes it poss ib l e  t o  markedly reduce t h e  fre
quency band subjec t  t o  t h e  transmission. 

It follows from t h e  foregoing t h a t  t h e  resolving power With respect t o  t h e  
frame height i s  determined by t h e  number of scan l i n e s  and with respect t o  t h e  
frame width (along t h e  l i n e )  by t h e  upper frequency limit of t h e  range of t h e  
video s igna ls .  I n  this connection, t h e  passband of t h e  t e l e v i s i o n  set must be 
matched t o  t h e  required resolving power, usually expressed by t h e  number of scan 
l i n e s .  

Section 2. Television Pickup Tubes 

The p r i n c i p a l  c h a r a c t e r i s t i c s  of a t e l e v i s i o n  system (resolving power, 
s p e c t r a l  s e n s i t i v i t y ,  e t c . )  are determined by t h e  pickup tube. 

The operating p r i n c i p l e  of modern pickup tubes i s  based on t h e  photo- /315
e l e c t r i c  e f f e c t  combined with t h e  charge storage.  The la t te r  makes i t  poss ib l e  
t o  u t i l i z e  t h e  prolonged ac t ion  of l i g h t  on t h e  photoe lec t r ic  converter (of a 
dura t ion  determined by t h e  frame per iod)  in s t ead  of instantaneous action. A s  a 
result, t h e  s e n s i t i v i t y  of t h e  converter i s  enhanced. The storage device, which 
i s  termed "target", cons i s t s  of a l a r g e  number of s torage  elements corresponding 
t o  t h e  scan elements, with each element s to r ing  up t h e  charge during t h e  frame 
period (during exposure) and re leas ing  it a t  t h e  moment i n  which t h e  s igna l  i s  
removed from a given scan element (on charge interchange).  

I n  accordance wi th  t h e  d iv i s ion  of t h e  photoeffect i n t o  e x t r i n s i c  and in
t r i n s i c  photoeffects,  various tubes employ e i t h e r  photoemissive o r  photoconduc
t ive converters. 

Photoemissive converters usually are designed i n  t h e  form of a mosaic of a 
l a r g e  number of photosensit ive g ra ins  ( seve ra l  mi l l ions)  coating t h e  sur face  of 
a d i e l e c t r i c .  
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Photoconductive converters with a su f f i c i en t ly  high res i s tance  (of t h e  order  
of Id’ ohm cm (Bibl.10) are constructed i n  t h e  form of continuous t h i n  films. 
They can a t  t h e  same time f u l f i l l  t h e  r o l e  of a s torage  device. The scan ele
ments i n  this case are determined by t h e  a rea  s of t h e  spot of t h e  scanning 
(charge-interchange) beam on t h e  t a r g e t .  

After scanning, t h e  elements are returned t o  t h e i r  in i t ia l  s t a t e ,  required 
for transmission of t h e  next frame. T h i s  is  accomplished by erasing t h e  elec
t r i c a l  image on t h e  t a r g e t .  Frequently t h e  scanning and erasing processes are 
combined ( t h e  vidicon, t h e  image orthicon, etc.) .  

Usually a d i s t i n c t i o n  i s  made between pickup tubes depending on whether t h e  
interchange of t h e  charge occurs on one s i d e  of t h e  t a r g e t  or on both s ides  of 
it (Bibl.15). I n  t h e  former case, t h e  processes of charge and discharge 
( s torage  and scanning) both occur on one s i d e  of t h e  t a r g e t  ( t h e  orthicon, t h e  
vidicon, etc.) .  I n  t h e  la t ter ,  t h e  t a r g e t  and t h e  photoconverter are separated 
and t h e  charge and d i scha r  e occur each on a d i f f e r e n t  s i d e  of t h e  t a r g e t  ( t h e  
image orthicon, t h e  ebicon7. Owing t o  t h e  increase  i n  t h e  storage e f f e c t  on t h e  
t a r g e t ,  t h e  s e n s i t i v i t y  of these  tubes i s  t h e  highest. 

From t h e  standpoint of t h e  type of electron-beam scanning, t he  tubes are 
divided i n t o  tubes wi th  scanning by a high-velocity beam ( t h e  iconoscope, t h e  
image iconoscope) and those  with scanning by a low-velocity beam ( t h e  orthicon, 
t h e  image orthicon, t h e  vidicon). In  t h e  former, t h e  secondary emission r a t i o  
of t h e  beam exceeds unity,  whereas i n  t h e  l a t t e r  it i s  low and hence t h e  scanning 
beam reduces the  i l luminated surface t o  t h e  cathode p o t e n t i a l  of t h e  e l ec t ron  
gun* 


I n  addi t ion  t o  t h e  photoconverter, t h e  t a r g e t  and t h e  e lec t ron  gun, present-
day pickup tubes may a l s o  be equipped with secondary-electron mul t ip l i e r s  t o  
amplify t h e  video s i g n a l  ( t h e  image orthicon),  t h e  electron-optical  i n t e n s i f i e r s  
of image brightness or o p t i c a l  transformers of t h e  s p e c t r a l  range which make /316
it poss ib l e  t o  operate i n  t h e  u l t r a v i o l e t  or i n f r a red  por t ions  of t h e  spectrum. 

An inva r i ab le  component of any pickup tube i s  t h e  focusing and de f l ec t ing  
system (FDS). 

The chief parameters of t h e  t e l e v i s i o n  tubes, which determine t h e  p o s s i b i l i 
t y  of using them i n  spacecraft  are t h e  l i m i t i n g  s e n s i t i v i t y  and resolving power 
(given a s u f f i c i e n t  r e l i a b i l i t y ) .  A t  present,  t he  g r e a t e s t  s e n s i t i v i t y  i s  dis
played by tubes of t h e  image or th icon  type. Special  models of image orthicons 
may operate even i n  a dark night ( i l lumina t ion  l u ) ,  s ince  the  l imi t ing  il
lumination of t h e  photocathode wi th  t h e  d e f i n i t i o n  z = 200 l i n e s  reaches l u  
(Bib1.27). Nevertheless, t h e  vidicon-type tubes, which d isp lay  a comparatively 
lower s e n s i t i v i t y  but much higher opera t iona l  q u a l i t i e s  ( r e l i a b i l i t y ,  s impl ic i ty  
of power supply, low power requirement, low weight and dimensions), have found 
g r e a t e r  appl ica t ions  i n  space research (on weather s a t e l l i t e s ,  Bib1.23, 26, 32,
33, bo), orb i t ing  l abora to r i e s  (Bibl.lk, 29),  Ranger satell i tes (Bibl.11, 34) ,  
etc.) .  The outlook f o r  t h e  f u t u r e  i s  t h a t  tubes of t h e  h a  e orthicon type but 
wi th  a n  increased r e l i a b i l i t y  w i l l  be used (Bibl.21, 22, 35 , and so  wi l l  be 
stereoscopic and co lo r  t e l e v i s i o n  (Bib1.38). 

288 



The resolving power of t h e  present-day types of tubes i s  roughly t h e  same 
f o r  a l l  types. In  t h e  bes t  models it reaches 800 - 1000 l i n e s  at  t h e  center  of 
t h e  image f i e l d  (Bibl.21, 31, 35). 

The Vidicon. The tube with a photoconductive t a r g e t  has been termed vidicon 
( i ts  other, less frequent ly  used ape l la t ions  are: s t a t i c o n  or r e s i s t i con)  

The c red i t  f o r  t h e  idea  of developing this tube belongs t o  A.A.Chernyshev 
and his idea  da tes  back t o  1924, but f o r  technica l  reasons t h e  first operational 
models of t h e  vidicons appeared as la te  as 1950 (Bibl.10) and they continue t o  
be perfected t o  this very day. 

Various models of vidicons exist, d i f f e r ing  i n  both t h e i r  photoconductive
films and design features, including weight and dimensions. The la t ter  are 
smaller f o r  t h e  vidicons than f o r  a l l  of t h e  other  known types of pickup tubes. 
Thus, t he  Soviet-made LI-407 miniature vidicon has a diameter of 13.5 mm, length 
of 115 mm and weight of 15 gm, with t h e  working area of t h e  t a r g e t  measuring
4.5 x 6 mm (Bibl.4). 

The broadest appl ica t ions  f o r  vidicons are found i n  spec ia l  t e l ev i s ion  
systems, such as . i ndus t r i a l  t e lev is ion ,  s ince  these systems a re  t h e  most inex
pensive, operat ional ly  simple, r e l i a b l e  and compact (Bibl.16) . The p r inc ipa l  
tubes manufactured i n  t h e  USSR f o r  these  purposes are vidicons of t h e  LI-23 type 
and i n  t h e  United S ta t e s  t h e i r  similar counterpart is  t h e  RCA-6198 (Bibl.16, 18). 

6 7 8  9 
I ro 11 12f?& I , , 
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7 

Fig.7.XIII Diagram of t h e  Vidicon Pickup Tube. 

The basic  element of t h e  vidicon i s  t h e  photoconductive t a r g e t  4 /317
(Fig.?.XIII), deposited on t h e  suf f ic ien t ly  t ransparent  s igna l  p l a t e  2 formed by 
spraying gold o r  t i n  oxide onto t h e  plane-paral le l  g l a s s  end Window of t h e  
tube 1. The res i s tance  of t h e  signal-plate layer must not exceed 1k-ohm, s ince  
otherwise an appreciable p o t e n t i a l  difference may arise i n  it (Bibl.5). The 
s igna l  p l a t e  contacts  i t s  voltage source I&.,,. via m e t a l  r i ng  3. 
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The most widely used vidicons contain t a r g e t s  of selenium and s t i b n i t e  
(Sb2S3), operating i n  t h e  v i s i b l e  region of t h e  spectrum (Fig.8.XIII). The pos
s i b i l i t i e s  f o r  expanding t h e  s p e c t r a l  s e n s i t i v i t y  range of t h e  vidicons by using 
o ther  materials ( l ead  su l f ide ,  germanium, or s i l i c o n  with a l l o y  elements, e t c . )  
are being experimentally inves t iga ted .  Vidicons wi th  a s p e c t r a l  s e n s i t i v i t y  
range extending t o  wavelengths of 1p and higher have already been developed 
(Bibl.2). 

is, r e l .  units 

Fig.8.XIII Spec t ra l  Charac te r i s t ics  of t h e  Vidicons 
with Various Targets . 

The rear sur face  of t h e  photoconductive l a y e r  4 ( c f .  Fig.7.XIII) i s  i l l u m i 
nated by a beam of e l ec t rons  formed by a triode-type e lec t ron  gun. The l a t te r  
cons i s t s  of t h e  thermionic cathode 11with t h e  fi lament 12, t h e  con t ro l  elec
t rode  10 with an ape r tu re  through which t h e  e l ec t ron  beam emerges, and t h e  
anode 13 connected t o  t h e  i n t e r n a l  conducting coating of t h e  cylinder 6. 

The magnetic c o i l s  '7 and 8, located outs ide  t h e  cylinder,  serve t o  focus 
and d e f l e c t  t h e  beam. The small cor rec t ing  c o i l  9 i s  normally used t o  cor rec t  
t h e  assembling defec ts  of t h e  e lec t ron  gun (center ing  of t h e  beam). To 
assure a maximally normal impingement of t h e  e l ec t ron  beam onto t h e  t a r g e t  

/318 
surface, t h e  mesh 5 i s  mounted 5 - 10 m i n  f r o n t . o f  t h a t  surface. T h i s  mesh 5 
produces a uniform dece lera t ing  f i e l d  similar t o  t h a t  of a f l a t  capacitor.  The 
normal impingement of t h e  beam onto a l l  of t h e  t a r g e t  elements makes it poss ib l e  
t o  preserve a nearly constant resolving power of t h e  tube with respect t o  t h e  
e n t i r e  frame, as w e l l  as a uniform image f i e l d .  

The conductive layer 6 and t h e  mesh 5 have an anode p o t e n t i a l  Ua = 300 v 
with  respect t o  t h e  cathode). A signal-plate vo l tage  of s eve ra l  t e n s  of vo l t s ,  
e.g., Us, = +20 v, i s  supplied t o  t h e  s igna l  electrode. 

The p o t e n t i a l  Ut of t h e  t a r g e t  surface fac ing  t h e  e l ec t ron  gun w i l l  be 
c lose  t o  U,, and hence t h e  ve loc i ty  v of t h e  e l ec t rons  of t h e  beam passing 
through t h e  mesh W i l l  diminish t o  

(6 . X I I I )  

where e and m are t h e  charge and t h e  mass of t h e  e lec t ron .  

On i l l m i n a t i o n  of t h e  l i gh t - sens i t i ve  t a r g e t  by a low-velocity e lec t ron  
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beam, the  number of a r r iv ing  e lec t rons  exceeds t h e  number of t h e  secondary 
e lec t rons  leaving t h e  t a rge t .  These secondary e lec t rons  are col lected by" t h e  
mesh and t h e  conductive coating of t h e  cylinder.  A s  a result, t h e  p o t e n t i a l  of 
t h e  t a rge t  elements i l luminated by t h e  electron beam w i l l  equal t h e  cathode po
t e n t i a l ,  and then t h e  beam e lec t rons  get  repel led a t  t h e  t a r g e t  surface i n  t h e  
d i r ec t ion  of t h e  anode. 

Suppose t h e  o p t i c a l  image of an object  i s  projected onto t h e  f ron t  surface 
of t h e  t a rge t  and t h e  f r o n t a l  g l a s s  via t h e  t ransparent  signal-plate layer .  
Then t h e  res i s tance  R of ind iv idua l  p a r t s  of t he  photoconductive t a r g e t  w % l l  
d i f f e r ,  varying within t h e  limits of from Rd ( res i s tance  of t h e  dark elements) 
t o  Rk ( res i s tance  of t h e  l i g h t  elements). 

I n  t h e  i d e a l  case every t a r g e t  element may be represented as a f ixed capaci
t o r  C shunted by t h e  var iab le  r e s i s t o r  R of t h e  photolayer (Fig.9.XIII). The 
extent  of res i s tance  R depends on t h e  thickness d and conductance (5 of t h e  
t a r g e t ,  namely, 

(7. X I I I )  

where s i s  t h e  area of t h e  scan element ( spot )  with t h e  diameter 6 on the  /319 
t a r g e t ;  o d  i s  t h e  dark conductance of t h e  t a r g e t  i n  t h e  t ransverse d i rec t ion ;  
E t  i s  t h e  i l luminat ion of t h e  t a r g e t ;  a and b are constant coef f ic ien ts .  

\ 
\ 

r - -,,-#- i 
I 

/ +o 

1 - - c - J 

Fig.9.XIII Equivalent Circui t  of t h e  Elements of a 
Photoconductive Target. 

1- Electron-gun cathode; 2 - Low-velocity e lec t ron  
beam; 3 - Target element. 

The capacitance of an element i s  defined as t h e  capacitance of a capaci tor  
whose d i e l e c t r i c  i s  t h e  photolayer, with t h e  aid of t h e  known equation 

( 8. X I I I )  

where e i s  t h e  d i e l e c t r i c  constant. 
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The time constant 7 of t h e  tArget elements thus  will be determined by t h e  
p rope r t i e s  of t h e  t a r g e t  material and t h e  i l lumina t ion  of a given s e c t o r  i n  ac
c o r d m e  with t h e  r e l a t i o n  

A s  we can see, t h e  best-illuminated elements w i l l  have t h e  lowest time 
constant 7. 

Hence, when t h e  t a r g e t  i s  not i l luminated (Et  = 0),  t h e  p o t e n t i a l  of i t s  
rear surface i s  c lose  t o  t h e  p o t e n t i a l  Us,p. of t h e  s i g n a l  p l a t e  (Fig.10 . X I I I )  . 
On i l lumina t ion  of t h e  t a r g e t  wi t t i  a low-velocity beam, t h e  p o t e n t i a l  of each 
element i s  reduced t o  t h e  cathode p o t e n t i a l  ( t o  zero).  The capac i tor  C proves 
t o  be charged, and t h e  p o t e n t i a l  difference on i t s  p l a t e s  equals Us+. After 
t h e  beam sweeps p a s t  t h e  concerned element, t h e  capac i tor  C g e t s  discharged 
across  t h e  r e s i s t o r  R with a time constant 7, dependent on t h e  i l lumina t ion  of 
t h e  element. The p o t e n t i a l  U of t h e  t a r g e t  sur face  fac ing  t h e  e l ec t ron  gun 
again begins t o  increase  and tends t o  reach t h e  p o t e n t i a l  Us+,. u n t i l  t h e  e l ec t ron  
beam again sweeps over this surface element (following the  frame period T i ) .  /320 

Fig.lO.XII1 P o t e n t i a l  Relief on t h e  Target. 

1- Change i n  p o t e n t i a l  of t h e  w h i t e  element with time; 


2 - The same, f o r  t h e  black element. 


The change i n  t h e  p o t e n t i a l  U with t h e  t h e  t i n  t h e  i d e a l  case i s  de
scribed by t h e  func t ion  

- _

u(t)=[/s.p.(l-e R c ) ( O < t < T f )  (10. X I I I >  

A t  t h e  t i m e  i n s t a n t  t = 0, when U ( t )  = 0, a new working cycle comences. 
A t  t h e  end of t h e  cycle ( t  = Tf ), t h e  more i l luminated elements w i l l  have a 
higher scanned-surface p o t e n t i a l  than  t h e  darker elements (Fig.lO.XII1). Thus, 
a charge image corresponding t o  t h e  i l lumina t ion  of t h e  elements i n t o  which t h e  
image g e t s  dissociated,  forms on t h e  photoconductive t a r g e t .  

The depth of t h e  charge image on t h e  t a r g e t  equals t h e  d i f fe rence  between 
t h e  l i g h t  Ut and t h e  dark Ud surface-element p o t e n t i a l s  and, p r i o r  t o  t h e  new 
scanning cycle, it i s  

Tf T f_ _ _  
A U = U , - U ~ = U ~ . ~ . ( ~~ g c - e  Rdc 1. (ll.XII1) 
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From eq.(l l .XIII)  it can be seen t h a t  t h e  depth of t he  charge image i s  
g rea t ly  affected by t h e  signal-plate p o t e n t i a l  Us.p.. 

I n  t h e  course of t h e  charge interchange, t h e  e lec t ron  beam erases t h e  
charge image of t h e  t a r g e t  and charges t h e  storage elements, so t h a t  t h e i r  po
t e n t i a l  difference roughly equals t h a t  of Us.p.. T h i s  charging current,  flowing 
across the  load r e s i s t o r  Ra incorporated i n  t h e  charging c i r c u i t  ( c f .  Figs.8 
and 9 . X I I I ) ,  generates pu lses  of t h e  video s i g n a l  voltage U, . The durat ion of 
these  pulses  i s  a funct ion of t h e  time To of t h e  scanning o r  t r a n m i s s i o n  of one 
element. 

The amplitude of video s igna l  current ismay be defiked as t h e  difference 
i n  mean currents  during t h e  charge-interchange per iod T, . T h i s  refers t o  t h e  / 3 2 l  
mean currents  required t o  reduce t h e  p o t e n t i a l s  of t h e  l i g h t  and t h e  dark ele
ments t o  t h e  cathode po ten t i a l ,  i.e., 

(12.xIII) 

With the  a id  of eq.(12.XIII), we w i l l  estimate t h e  beam current  ibrequired 
f o r  t h e  complete.scanning and hence a l s o  t h e  erasure of t h e  charge image. To 
this end, t h e  beam must, within t h e  charge-interchange period T,, reduce t o  t h e  
cathode p o t e n t i a l  even t h e  surface of t h e  elements whose p o t e n t i a l  reaches i t s  -upper limit, i.e., eTals Us.P,. Assuming i n  eq.(l2.XIII), t h a t  Ua - Ud = U,.p. 
= 20 v, C = 1.3 x 10- farad, To = 7 .8  x sec, and considering t h a t  t h e  mean 
effect iveness  of t h e  ac t ion  of t h e  beam e lec t rons  i s  0.3 (i.e., t h a t  i, = 0.3 ib), 
we f ind  t h a t  t h e  beam current ib= 10 pa. I n  reality, focusing conditions m a k e  
it impossible t o  obtain such a l a rge  beam current  i n  t h e  presence of an ade
quately small scan element. The present-day vidicon designs y i e ld  a beam cur
rent  t h a t  i s  roughly one order of magnitude smaller than t h a t  required f o r  t h e  
complete erasure of t h e  charge image. Therefore, i n  r e a l i t y ,  t h e  lower l imi t ing  
poten t ia l ,  which i s  equal t o  t h e  cathode po ten t i a l ,  i s  not reached a t  t h e  rear 
surface of t h e  t a r g e t  and so t h e  charge image i s  not completely erased when t h e  
charge interchange takes  place.  The r e s idua l  charge image i s  superposed on t h e  
charge image of t h e  next frame, and this manifests i tself  i n  t h e  increase i n  t h e  
i n e r t i a  of t h e  tube (b lur r ing  of t h e  images of moving objec ts )  and i n  t h e  de
crease i n  i t s  contrast  range, owing t o  t h e  decrease in t h e  s igna l .  

The i n e r t i a  caused by t h e  charge-interchange beam whenever i t s  current  i s  
not s u f f i c i e n t l y  l a rge  t o  completely erase t h e  charge image i s  termed charge-
interchange i n e r t i a .  For vidicons, t h e  extent  of this i n e r t i a  depends on t h e  
p o t e n t i a l  Us.p. of t h e  s igna l  p l a t e ,  which determines t h e  depth of t he  charge 
h a g e  on t h e  t a rge t .  Therefore, U,.,.must be so f ixed  as t o  make allowance f o r  
t h e  desired compromise between t h e  s e n s i t i v i t y  and i n e r t i a  of t h e  tube. 

Note t h a t  an appreciable increase i n  U8.p. l eads  t o  a sharp increase i n  t h e  
shadow current  of t h e  photoconductive t a rge t ,  and this also r e s t r i c t s  t h e  pos
s i b i l i t i e s  f o r  enhancing t h e  tube s e n s i t i v i t y  by increasing Us.,,.. 

The photoe lec t r ic  component of i n e r t i a ,  due t o  t h e  phys ica l  nature of t h e  
i n t r i n s i c  photoeffect,  predominates when t h e  i l luminat ion i s  s m a l l ,  w h i l e  t h e  
charge-interchange component predominates when t h e  i l luminat ion i s  considerable. 

293 




The t o t a l  i n e r t i a  of vidicons, however, i nc reases  with decreasing i l lumination. 

The tube i n e r t i a  i s  normally estimated according t o  t h e  decrease i n  t h e  re
sol.ving power N on t h e  transmission of t h e  mobile test p a t t e r n  0249 whose /322 
image moves over t h e  t a r g e t  at t h e  rate of 3 m/sec .  For vidicons of t h e  
LI-23 type, t h e  resolving power on transmission of a s t a t iona ry  tes t  p a t t e r n  0249 
amounts t o  550 l i n e s  a t  t h e  frame center  and 350 l i n e s  a t  t h e  frame corners, and 
on transmission of a mobile t es t  p a t t e r n  it i s  300 l i n e s  at  t h e  center  (Bibl.10). 

Fig . l l . X I I I  Luminous Charac t e r i s t i c s  of 
t h e  IJ-23 Vidicon. 

The dependence of t h e  s i g n a l  current on t h e  photocathode i l lumina t ion  as 
a function of various signal-plate p o t e n t i a l s  i s  described by means of t h e  
luminous cha rac t e r i s t i c s .  The luminous c h a r a c t e r i s t i c s  of t h e  LI-23 vidicon 
(Bibl.15) are shown i n  Fig.ll.XII1 which i n d i c a t e s  t h a t  t h e  real s e n s i t i v i t y  of 
this vidicon f o r  t h e  p o t e n t i a l  U6.p. = 20 v i s  characterized by t h e  photolayer 
i l lumination Et = 10 lu f o r  t h e  s i g n a l  current i, = 5 X lo-* a. 

.%ann ing 
e 1 e c  t ron 

beamI 

P r o j e c t e d  image 

Fig.12.XIII Tape f o r  E l e c t r o s t a t i c  Recording of Images. 

The noise i n  t h e  vidicon TV systems i s  determined by t h e  noise due t o  t h e  
charge-interchange beam and t o  t h e  preamplifier (c f  Sect .4 of this chapter).  
The energy s e n s i t i v i t y  of t h e  vidicons used i n  t h e  United S t a t e s  rockets and 
satellites i s  40 - 50 ma/w. 
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Invest igat ions (Bibl.10) show t h a t  i n  t h e  presence of a s t a b l e  power-supply 
regime f o r  a l l  of t h e  electrodes of t h e  vidicon and a su f f i c i en t  beam-current 
i n t e n s i t y  it is  possible  t o  preserve a ' h igh  qua l i ty  of images with a va r i a t ion  
i n  the  i l luminat ion within s u f f i c i e n t l y  broad l imi t s ,  by adjust ing only t h e  
signal-plate po ten t i a l .  T h i s  s p e c i a l  feature of t h e  vidicon i s  u t i l i z e d  i n  t h e  
construction of c i r c u i t s  f o r  t h e  automatic regulat ion of t h e i r  i l lumination, 
operating over a range of i l luminat ions E of from several t o  hundreds lux. The 
changes i n  Us.*., taking i n t o  account t h e  requirement of assuring a low i n e r t i a ,  
usually range within t h e  limits of from 10 t o  60 v (Bibl.5). 

There a r e  some vidicon varieties operating i n  high-velocity electron-beam 
regimes such as the  Lt-401 and o thers  (Bibl.10) . In addi t ion  t o  t h e  d i f f e r 
ences i n  t h e  power supply regime of t h e i r  s igna l  p l a t e s ,  they a l s o  differ /323
somewhat i n  t h e i r  design, and i n  p a r t i c u l a r  t h a t  no mesh i s  mounted i n  t h e  
neighborhood of t h e  t a rge t .  

The resolving power of t h e  vidicons, operating i n  t h e  high-velocity beam 
regime, i s  somewhat higher than t h a t  of t h e  conventional vidicons, whose other  
parameters are similar and t h e i r  i n e r t i a  i s  smaller. Their chief shortcoming i s  
t h e  shor te r  service l i f e  of 120 and 500 hr, respect ively,  f o r  t h e  IJ-401and f o r  
t he  LI-23 (Bibl.10). 

Further development of t h e  vidicons i s  being car r ied  out p a r t i c u l a r l y  i n  
t h e  d i rec t ion  of enhancing t h e i r  s e n s i t i v i t y .  To this end, e.g., t h e  induced 
conductance e f f e c t  may be u t i l i z e d  very e f f ec t ive ly  (Bibl.5). T h i s  e f f e c t  con
sists i n  the  decrease i n  t h e  res i s tance  of a d i e l e c t r i c  or semiconductor on il
lumination with e lec t rons  of s u f f i c i e n t l y  high energies.  

The induced conductance e f f e c t  i s  u t i l i z e d  i n  t h e  recent ly  developed ebicon 
tube. This tube contains a sec t ion  f o r  t h e  t r a n s f e r  of t h e  e lec t ron  image from 
a semitransparent antimony-cesium photocathode t o  a two-sided t a r g e t  with charge-
interchange on t h e  back s i d e  being car r ied  out by a low-velocity e lec t ron  beam 
( B i b l . 1 5 ) .  A semiconductor l aye r  with a sharply expressed induced conductance 
e f f e c t  i s  deposited on t h e  t a r g e t  surface facing t h e  e lec t ron  gun. The photo
electrons emitted by the  photocathode become accelerated t o  an energy of 
-20,000 ev. They exc i te  induced conductance i n  t h e  semiconductor l aye r  and, as 
a result, t h e  t a r g e t  storage elements become discharged. In  this respect  t h e  
operation of t h e  ebicon resembles t h a t  of t h e  vidicon, although t h e  s e n s i t i v i t y  
of t he  former i s  much higher. Thus, plans exist t o  equip orb i t ing  astronomical 
observatories with an ebicon operating with a t a r g e t  i l luminat ion of up t o  E = 
= 5 x lo-' lu (Bib l . l&,  15). 

O f  g rea t  promise t o  space research i s  t h e  use of tubes analogous t o  t h e  
vidicons with a moving e l e c t r o s t a t i c  t a r g e t  on which t h e  charge image m y  be 
preserved (Bibl.3, 15, 32). I n  this case, t h e  conversion of t h e  o p t i c a l  image 
t o  t h e  charge image i s  car r ied  out  on a spec ia l  t ape  consis t ing of four  trans
parent layers: t h e  polystyrene subs t ra te  4 (Fig.l2.XIII), t h e  s igna l  e lectrode 
i n  t h e  form of a t h i n  (0.01 p )  layer of gold 3, t h e  photoconverter layer 2 re
sembling t h e  vidicon t a rge t ,  and an addi t iona l  layer of t h e  d i e l e c t r i c  5 (poly
s tyrene 0.6 p ) .  T h i s  t ape  fulf i l ls  t h e  r o l e  of t h e  vidicon t a r g e t  and i s  con
nected t o  t h e  amplifier c i r c u i t  by t h e  m e t a l  s t r i p s  1. The tube through which 
this tape i s  drawn has an e lec t ron  gun and a focusing and def lec t ion  system. 
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P r i o r  t o  i t s  actuation, t h e  tape  i s  sens i t i zed  by c rea t ing  a constant po
t e n t i a l  d i f fe rence  i n  t h e  d i e l e c t r i c  layer .  For this purpose, t h e  la t ter  i s  
illuminated with a broad e l ec t ron  beam of an  energy of approdmately 200 ev. As 
a result, a p o t e n t i a l  difference of approximately 200 v i s  created between /324
t h e  surfaces of t h e  d i e l e c t r i c .  To produce a charge image on t h e  d i e l e c t r i c  
layer ,  t h e  o p t i c a l  image of an  object i s  pro jec ted  onto t h e  tape, while simul
taneously t h e  d i e l e c t r i c  surface i s  swept by a slow-velocity e lec t ron  beam. A t  
po in t s  where t h e  i l lumina t ion  i s  grea te r ,  t h e  conductivity of t h e  photolayer i s  
considerable and t h e  p o t e n t i a l  considerably reduced. Thus, t h e  o p t i c a l  image i s  
converted t o  t h e  charge image. The tape  wi th  t h e  charge image i s  wound i n t o  a 
c o i l  and may be s tored  f o r  a prolonged period of time. 

Reconversion of t h e  charge image t o  t h e  video s i g n a l  i s  accomplished i n  
the  same tube by means of a well-focused high-velocity e l ec t ron  beam. Thus each 
element i s  reduced t o  t h e  p o t e n t i a l  U, and t h e  video s i g n a l  arises as t h e  load 
r e s i s t o r .  

The l i g h t  s e n s i t i v i t y  of present-day e l e c t r o s t a t i c  tapes  i s  comparable t o  
t h e  s e n s i t i v i t y  of photographic films, and t h e i r  r e so lu t ion  reaches 330 t e l ev i 
s ion  (black and w h i t e )  l i n e s  p e r  millimeter (Bibl.15). The e l e c t r o s t a t i c  tape  
may be s tored  f o r  severa l  months and repeatedly re-used. 

The Image Orthicon. The tube with a two-sided semiconductor t a rge t ,  termed 
t h e  image orthicon, was suggested by a Soviet s c i e n t i s t  G.V.Braude, i n  1938. 
The first models of this tube appeared i n  1946 (Bibl.lOj and found broad applica
t i o n  i n  various high-sensit ivity applied t e l e v i s i o n  systems as w e l l  as i n  tele
v i s ion  broadcasting. The use of t hese  tubes i n  space research is ,  as has been 
pointed out above, highly promising. 

The e l ec t ron  image i s  created and t r ans fe r r ed  i n  t h e  f r o n t  p a r t  of t h e  
tube, onto which t h e  l e n s  2 p r o j e c t s  t h e  image 1 (Fig.13.XIII) of an objec t .  
The tube diameter i n  this p a r t  i s  t h e  l a r g e s t ,  namely, 77 mm i n  the  Soviet-
produced LI-13, LI-17, LI-201 image orthicons (Bibl.10). The middle p a r t  of t h e  
tube represents t h e  scanning section, w h i l e  i t s  rear p a r t  contains a secondary-
e lec t ron  m u l t i p l i e r  serving t o  amplify t h e  video s igna l .  The ove ra l l  length of 
an LI-201tube i s  390 mm. It i s  placed i n  a set of t h e  focusing and de f l ec t ing  
c o i l s  9 and 10. The c o i l  11 serves t o  cor rec t  t h e  electron-gun beam. 

The semitransparent photocathode 3 i s  deposited on t h e  i n t e r n a l  surface of 
t h e  f r o n t  g l a s s  and has a p o t e n t i a l  of 300 v. Most Soviet-made image orthicons 
include a bismuth-silver-cesium photocathode, except t h e  LI-13 which has an 
oqgen-silver-cesium photocathode s e n s i t i v e  t o  near-LR rad ia t ion  (Bibl.10). 

Mounted not far from t h e  photocathode 3 i s  t h e  acce lera t ing  e lec t rode  4 
which generates t h e  f i e l d  of t h e  t r a n s f e r  of e l ec t rons  onto t h e  t a r g e t .  The 
e lec t rons  emitted by t h e  photocathode r e t a i n  t h e i r  cross-sectional dens i ty  (325
d i s t r i b u t i o n  i n  t h e  focusing plane w h i l e  t r ave l ing  toward t h e  t a r g e t .  On s t r i k 
ing t h e  t a r g e t  6, t h e  e lec t rons  cause secondary emission and t h e  formation on 
the  t a r g e t  of a charge image corresponding t o  t h e  d i s t r i b u t i o n  of i l lumina t ion  
on t h e  photocathode. The secondary e lec t rons  are co l lec ted  by a very f i n e  wire-
mesh screen 5 wi th  a voltage of 1- 2 v (with respec t  t o  t h e  thermionic cathode), 
located a t  a d is tance  of several t e n s  of microns from t h e  t a r g e t .  The t a r g e t  
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i s  a t h i n  (3 - 5 p) f i l m  of spec ia l  semiconducting g l a s s  o r  of some o ther  ma,
ter ia l ,  mounted on a r ing  together  with t h e  mesh screen 5. 

The process of t h e  formation of charge image reduces t o  t h e  charging of t h e  
storage elements between t h e  mesh and t h e  t a r g e t  during t h e  secondary emission 
from t h e  t a rge t .  Clearly, a higher p o t e n t i a l  i s  created on t h e  sec tors  corre
sponding t o  t h e  br ighter  elements of t h e  image. The depth of t h e  charge image 
on t h e  t a r g e t  i s  determined by t h e  magnitude of t h e  accumulated charge and 
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Fig .13.XI11 Diagram of Smage-Orthicon Type Tube. 

depends on the  po ten t i a l  applied t o  t h e  mesh as w e l l  as t o  t h e  mesh-target 
capacitance. T h i s  capacitance i tself  depends on t h e  dis tance between the  mesh 
and t h e  t a rge t .  As this dis tance increases,  t h e  tube s e n s i t i v i t y  increases,  
s ince a l o w  capacitance means t h a t  a lower photocurrent and a lower i l luminat ion 
of the  photocathode are required t o  a t t a i n  t h e  same p o t e n t i a l  difference.  How
ever, t h e  video s igna l  then decreases i n  magnitude. Therefore, i n  t he  image 
orthicons the  mesh-to-target spacing must be selected and maintained very rigor
ously. The depth andthe charge-image def ini t iondepend a l s o  on t h e  t a r g e t  tem
perature ,  s ince the  temperature alters t h e  proper t ies  of t h e  t a r g e t  and primari
l y  of t h e  conductivity. 

The image charge is ,  owing t o  e l e c t r o s t a t i c  induction, v i r t u a l l y  trans- /326
mitted completely t o  t h e  reverse s i d e  of t h e  t a rge t ,  which i s  scanned by a low-
veloci ty  beam. 

The e lec t ron  gun of t h e  tube cons is t s  of t h e  thermionic cathode 17 with t h e  
fi lament l$, t h e  cont ro l  e lectrode 16 and of t h e  anode 13 with a small beam-
exit aperture.  The annular decelerat ing electrode 7 with a small pos i t i ve  PO
tent ia l  serves t o  reduce t h e  veloci ty  of t h e  e lec t rons  during t h e i r  approach t o  
t h e  t a r g e t .  The i n t e r n a l  posi t ive-potent ia l  e lectrode 8 serves t o  focus t h e  
beam and t o  p ro tec t  it against  external e l e c t r i c a l  f i e l d s .  

If a charge image i s  present  on t h e  t a rge t ,  p a r t  of t h e  e lec t rons  from t h e  
scanning beam w i l l  be expended on erasing t h e  image. The number of e lec t rons  
bouncing off t h e  t a r g e t  and returning t o  t h e  e lec t ron  gun, where they are 
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col lec ted  i n t o  a beam by t h e  same f i e l d  which had decelerated and focused them 
during t h e i r  t r a v e l  toward t h e  t a r g e t ,  i s  inve r se ly  propor t iona l  t o  the  depth of 
t h e  p o s i t i v e  charge image on t h e  t a r g e t .  The re turn ing  e lec t rons  s t r i k e  t h e  
forward p a r t  of t h e  annular anode 13, which i s  t h e  first s tage  of t h e  secondary-
e lec t ron  mul t ip l i e r .  The secondary-electron m u l t i p l i e r  cons i s t s  of several 
louver-type dynodes a. The anode cy l inder  12 cont r ibu tes  t o  an improved3selec
t i o n  of secondary e l ec t rons  from t h e  first dynode 13. The amplified (-10 x) 
e lec t ron  f lux i s  co l lec ted  by t h e  c o l l e c t o r  15  of t h e  mul t ip l i e r .  Connected t o  
t h e  co l l ec to r  c i r c u i t  i s  load r e s i s t o r  Ra, from which t h e  video s i g n a l  Uv,s, is  
taken, which i s  add i t iona l ly  amplified by t h e  e l ec t ron  amplifier ( f o r  Ra = 
= 10 - 25 k-ohm, Uv.s, amounts t o  several hundred m i l l i v o l t s ) .  

I n  tubes of t h e  image orthicon type t h e r e  i s  v i r t u a l l y  no i n e r t i a  when t h e  
test p a t t e r n  i s  moved a t  t h e  rate of 3 m/sec  (Bibl.10). 

The resolving power of t h e  s e r i a l l y  manufactured tubes LI-17 at  t h e  center  
of t h e  image f i e l d  i s  characterized by t h e  l i n e  number z = 625 f o r  t h e  photo
cathode i l l m i n a t i o n  Et = 0.5 l u ,  and z = 550 f o r  Et = 0.1 l u  (Bibl.10). 

The maximum permissible photocathode i l lumina t ion  Et.,.. = 5 l u  f o r  t h e  
i l lumina t ion  t i m e  of 5 min. The permissible temperature f luc tua t ions  during 
normal operation are from 35 t o  6OoC, with a temperature drop A t  along t h e  
cy l inder  of not more than  5 O C .  T h i s  requires t h e  maintenance of a s u f f i c i e n t l y  
s t a b l e  temperature regime during t h e  operation of t h e  s e r i a l l y  manufactured image 
orthicons,  as well as preheating f o r  30 - 60 min following t h e  start of opera
t ion .  Their se rv ice  l i f e  i s  approximately 200 h r  (Bibl.10). A major short
coming of t h e  image orthicons i s  t h e  presence of 'image defec ts ,  i .e.,  "snow
f lakes"  due t o  noise, b lur r ing  of t h e  black boundaries, halo, e tc .  (Bibl.10, 1 5 ) .  

Improvements of t h e  image orthicons are being ca r r i ed  out i n  t h e  d i r e c t i o n  
of s e l ec t ing  optimal material and a design of t h e  p r i n c i p a l  electrodes ( t a r g e t  , 
mesh) as w e l l  as increas ing  t h e i r  r e l i a b i l i t y .  The most s ens i t i ve  are t h e  /327
American-developed (Bibl.21, 272 image orthicons d t h  an oxide-magnesium t a rge t :  
t h e i r  s e n s i t i v i t y  (reaching 10- 1u) g r e a t l y  exceeds the  s e n s i t i v i t y  of human 
vision. 

Any f u r t h e r  increase  i n  t h e  s e n s i t i v i t y  of t h e  image orthicons, as w e l l  as 
of o ther  types of pickup tubes, may be a t t a ined  by in t ens i fy ing  t h e  inc ident  
luminous f lux .  T h i s  i s  accomplished ch ie f ly  w i t h  t h e  a i d  of ampl i f ie rs  of t h e  
brightness of t h e  o p t i c a l  image ( e l ec t ro rbop t i ca l  image i n t e n s i f i e r s )  incorpo
ra t ed  i n t o  t h e  design of t h e  pickup tube (Bibl.15). A p a r t i c u l a r l y  high degree 
of i n t e n s i f i c a t i o n  may be obtained by t h e  i n t e n s i f i e r s  i n  which t h e  intercascade 
coupling i s  based on t h e  f i b e r  op t i c s  (Bibl.30). 

Another s ign i f i can t  t rend  i n  t h e  development of pickup tubes i s  the  use of 
electron-optical  spectrum transformers, which make it poss ib l e  t o  d isp lace  t h e  
s p e c t r a l  operating c h a r a c t e r i s t i c  of t h e  system i n t o  t h e  u l t r a v i o l e t  or i n f r a red  
region of t h e  spectrum ( B i b 1 . a ) .  

Plans exist f o r  i n s t a l l i n g  t e l e v i s i o n  apparatus with high-sensit ivity image 
orthicons assuring round-the-clock operation i n  various spacecraft  and pr imar i ly  
i n  those designed t o  inves t iga t e  t h e  luna r  surface (Prospector, Surveyor). 
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Section 3. P r inc ipa l  Elements of E l e c t r i c a l  Ci rcu i t ry  

The e l e c t r i c a l  c i r c u i t r y  of a t e l e v i s i o n  s y s t e m  includes units (Fig.ll+..XIII) 
which assure  t h e  amplification of video s igna ls ,  synchronous operation of t h e  
t r ansmi t t e r  and receiver,  as well as transmission and reception of s igna l s  over 
a rad io  channel. The e l e c t r i c a l  t r a c t  t ransmi ts  t h e  video s igna l  from t h e  out
put  of t h e  pickup tube t o  t h e  con t ro l  e lec t rode  of t h e  cathode-ray p i c t u r e  tube. 

The most important element of t h e  e l e c t r i c a l  t r a c t  i s  t h e  broadband ampli
f iers  ,Aw from t e n s  of cps t o  seve ra l  mega-cps i n  broadcasting systems (Bibl. lS),  
termed video amplifiers, which assure imdistorted transmission of t h e  video 
s igna l .  

The f irst  s tages  of t h e  amplifier ( t h e  preamplifier)  are i n s t a l l e d  i n  t h e  
neighborhood of t h e  p i c k q  tube  and t h e i r  design i s  such t h a t  t h e  noise they 
cont r ibu te  i s  minimal .  To this end, special measures (anti-noise cor rec t ion)  
usually are taken i n  t h e  video amplifiers of t h e  t ransmi t t ing  side.  

The sawtooth l i n e  and frame scan pulses  which d r ive  t h e  de f l ec t ion  c o i l s  
(FDS) a r e  shaped by t h e  sweep uni t .  The control. pu l se s  energizing t h e  sweep /328 
generators a r e  produced i n  t h e  synchronizing generator. The la t te r  a l s o  pro
duces blanking pulses  which, after appropriate q l i f i c a t i o n ,  a r e  conveyed t o  
t h e  cont ro l  e lec t rode  of t h e  pickup tube e l ec t ron  gun. To assure smooth image 
edges, t h e  duration of t h e  l i n e  blanking pulses  i s  made somewhat sho r t e r  than 
t h e  r e t r ace  time of t h e  beam. 

Fig.ll+.XIII Block Diagram of t h e  E l e c t r i c a l  Tract 
of a Television System. 

1- Pickup camera; 2 - Video ampl i f ie r ;  3 - Modulator;
4 - Ultrashort-wave rad io  t r ansmi t t e r ;  5 - Sweep u n i t ;  
6 - Synchronizing generator;  7 - Ultrashort-wave rad io  

rece iver ;  8 - Video amplifier; 9 - Sweep u n i t ;  
10 - Synchronizing u n i t ;  11- Visual-display tube. 

The synchronizing pulses  are, moreover, conveyed t o  t h e  video amplifier 
where they are mixed with t h e  video s igna l .  Thus, t h e  t ransmi t ted  (complete) 
t e l e v i s i o n  s i g n a l  includes t h e  video s i g n a l  p l u s  t h e  blanking and synchronizing 
pulses  

I n  order t o  f a c i l i t a t e  t h e  separa t ion  of synchronizing pu l ses  and image 
pulses  on t h e  receiving side,  t h e  former are t ransmi t ted  i n  t h e  "blacker than  
black" region. In  t e l e v i s i o n  broadcasting, t h e  apex level of t h e  synchronizing 
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pulses  i s  taken a t  100%. The black l e v e l  then i s  75% and t h e  w h i t e  l eve l ,  from 
10 t o  15% (Bibl.18). The r a t i o  between s i g n a l  levels i n  spec ia l  systems i s  not 
standardized. 

The re la t ionship  between t h e  video s ignal ,  t h e  l i n e  r e t r ace  and t h e  syn
chronizing and blanking pulses  i s  shown i n  Fig.15.XIII. 

The frame synchronizing and blanking pulses  d i f f e r  i n  duration. I n  s i q l i 
f i e d  t e l ev i s ion  systems which transmit ind iv idua l  frames, t h e  synchronization 
may be accomplished with t h e  a id  of only t h e  line-synchronizing pulses,  provided 
t h a t  t h e  i n i t i a l  i n s t a n t  of t h e  frame transmission i s  preset .  

Note t h a t  i n  cases where it i s  necessary t o  t ransmit  information about t h e  
mean i l luminat ion l e v e l  of t h e  t ransmit ted scene, i.e., about t h e  constant com
ponent of t h e  video s ignal ,  t h e  height of t h e  blanking pulses  usually i s  varied 
i n  proportion t o  this constant component, so  t h a t  t h e i r  upper p a r t  would p e r s i s t  
at  t h e  black level (Fig.15 .XIII) . 

In t e l ev i s ion  t ransmit t ing devices of an applied nature, spec ia l  a t ten- /329
t i o n  i s  devoted t o  assur ing t h e  r e l i a b i l i t y  of t h e i r  performance. Various s t eps  
are taken t o  enhance this r e l i a b i l i t y ,  including t h e  dupl icat ion of t h e  least 
r e l i a b l e  elements. Elementary e l e c t r i c a l  c i r c u i t s  with a m i n i "  number of radio 
tubes are employed, because of these tubes break down roughly f i v e  times as 
of ten  as t h e  other  c i r c u i t  elements (Bibl.16). In  ce r t a in  t e l ev i s ion  systems i n  
use, pulses  a r i s ing  i n  t h e  def lec t ion  c o i l s  during t h e  r e t r ace  are u t i l i z e d  in
s tead of radio tube c i r c u i t s  t o  blank t h e  beam. The pickup cameras are enclosed 
i n  a spec ia l  housing within which normal operating conditions are assured 
(Bibl.16). 

Blanking pulse time 


I+-----+ 
IEetrace sweep time 


, m i 

Synchronizing pulse1 I 

Blanking 


Black 

level 


white 
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Fig.15.XIII Relationship between Sweep Retrace Time and 
t h e  Synchronizing and Blanking Pulses. 

The t e l ev i s ion  cameras designed f o r  i n s t a l l a t i o n  i n  spacecraft  must, more
over, -beequipped with devices assuring automatic operation over a prolonged 
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period of time. They a l s o  must s a t i s f y  various c m o n  requirements for t he  
measuring equipment operating i n  outer  space. 

I n  this case the  weight, dimensions and power requirement of t h e  instru
ments acquire spec ia l  significance.  The power requirement must be such a s  t o  
assure suff ic ient  power t o  transmit t he  te lev is ion  signal. t o  t he  ear th .  To re
duce the  dimensions and the  power of the  spacecraft-borne t ransmit ter ,  t h e  cur
ren t  American space t e l ev i s ion  systems (Bibl .11 ,  l.4, 37, 39) employ a slow 
v e r t i c a l  sweep which assures narrowing t h e  frequency band t o  several  t ens  of 
kilo-cps and l e s s .  For example, i n  t he  Tiros-series s a t e l l i t e s  (Bib1.32, 40) /330 
t he  frame period was increased t o  2 sec, which leads t o  a 60 X reduction i n  the 
frequency band and a corresponding reduction i n  the t ransmi t te r  power required 
t o  transmit a frame a s  compared with the  United States commercial t e l ev i s ion  

where the  frame period Tf = -30 sec. The reduction i n  the  scanning r a t e  makes 

it possible, moreover, t o  reduce the  beam current of t he  vidicon and t o  increase 
i t s  resolving power, [by -30% i n  the above example (Bibl.37)I compared with the  
normal. Clearly, the  shadow current of t he  t a rge t  must i n  this case be reduced 
t o  a minimum. 

To eliminate blurr ing of the  image i n  the  presence of a long Tf, it i s  
necessary t o  employ compensation methods for t he  displacement or f o r  t he  shut te r  
by u t i l i z i n g  the  memory e f f ec t  of the  vidicon t a rge t .  Investigations (Bib1.32, 
37) 	have shown tha t  f o r  t he  slow-sweep vidicons used i n  t h e  United S ta tes  an 
exposure time of 1- 2 bsec i s  suf f ic ien t ,  i f  the  ear th 's  i l lumination i s  suffi
c ien t ly  br ight .  

Fig.16.XIII Block Diagram of a Spacecraft-Borne Television 
T r a n e t t i n g  Apparatus : 

1- Timer; 2 - Blanking-pulse generator; 3 and 4 - Horizontal 
and vertical-sweep generators; 5 - Shutter  cont ro l  c i r c u i t s ;  
6 - Focus cont ro l  c i r c u i t ;  7 - Regulator of power supply t o  
focusing system; 8 - Power pack; 9 - Vidicon; 10 - Memory unit;
ll - Video amplifier; 12 - Control c i r c u i t  of voltage Us.p.. 
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The operat ional  con t ro l  of t h e  tube 9 as w e l l  as t h e  focusing of t h e  o p t i c a l  
image and of t h e  i r i s i n g  of l ens  L may be accomplished with t h e  a i d  of t h e  
spec ia l  systems 5 and 6, as i l l u s t r a t e d  by t h e  block diagram of a t y p i c a l  space 
t e l ev i s ion  t ransmit t ing apparatus (Fig.16 . X I I I )  developed i n  t h e  United S t a t e s  /331 
(Bib1.37). Simplified forms of instruments of this kind are a l s o  used i n  

'weather satellites (Bib1.26, 32). I n  this case, r e l i a b i l i t y  i s  assured by using 
a vidicon-type pickup tube, p r in ted  and t r a n s i s t o r i z e d  c i r c u i t s ,  f i l l i n g  of 
panels  with a compound, temperature s t a b i l i z a t i o n ,  e t c .  

The vidicon used i n  t y p i c a l  instruments of this kind (diam. 12.7 mm) has a 
square-shaped raster measuring 6.5 X 6.5 mm and a d e f i n i t i o n  of 500 l ines .  For 
a l i n e  frequency of 250 cps and a frame period of 2 sec, t h e  frequency band of 
t h e  video s igna l  recorded on t h e  magnetic t ape  i s  62.5 kilo-cps. The wei 
t h e  camera i s  2.7 kg and t h e  required power does not  exceed 10 w (Bib1.37 

The set of t h e  sa te l l i t e -borne  TV equipment includes i n  addi t ion a command 
receiver,  a timer, and a con t ro l l e r  which d i r e c t  t h e  camera operations on command 
from t h e  ea r th  or from t h e  spacecraft-borne p r o g r d n g  mechanism, and i n  addi
t i o n  a memory device and an image s igna l  t ransmi t te r .  

Certain vidicon-employing transmitters include t h e  regulat ion of t h e  
voltage supplied t o  t h e  s igna l  p l a t e ,  which i s  ca r r i ed  out by means of a spec ia l  
photores i s tor  or by t h e  photocurrent of t h e  tube i t se l f  (Bibl.16). The more 
i n t r i c a t e  systems a l s o  employ regulat ion of t h e  beam current .  This broadens t h e  
operat ional  i l luminat ion range of t h e  t ransmi t t ing  device and enhances t h e  c l a r i 
t y  of t h e  transmission. 

The t e l ev i s ion  receivers ,  which are a most important p a r t  of t h e  ground-
based measuring equipment, are distinguished by t h e i r  considerable variety:  they 
may operate i n  t h e  meter range, or i n  decimeter and centimeter waves; they may 
be based on t h e  superheterodyne c i r c u i t  or on t h e  direct-gain c i r c u i t ;  they may 
be designed f o r  observation from t h e  visual-display tube or from a pro jec t ion  
screen; and they may handle t h e  i n s e r t i o n  of t h e  received information i n t o  a 
computer f o r  subsequent processing or i ts  re-transmission along a radio delay 
l i n e ,  e t c .  (Bibl.3). 

The basic elements of t h e  e l e c t r i c  t r a c t  on t h e  receiving s ide  ( c f .  
Fig.l&.XIII) i n  addi t ion  t o  the  high-frequency p a r t  of t h e  rece iver  and t h e  
visual-display tube with a focusing and de f l ec t ion  system, are: a) t h e  de tec tor  
assuring t h e  i s o l a t i o n  of t h e  video s igna l ;  b)  t h e  video amplifier amplifying 
t h e  s igna l  t o  t h e  extent  required t o  con t ro l  t h e  operat ion of t h e  visual-display 
tube (20 - 40 v);  c )  t h e  synchronizing unit ,  which i s o l a t e s  t h e  synchronizing 
pulses  from t h e  o v e r a l l  t e l ev i s ion  s igna l  (by methods of amplitude and time 
se lec t ion) ;  and d )  t h e  sweep un i t ,  generating t h e  sweep pulses .  

Radiotelevision communications over l a rge  d is tances  i n  outer  space are 
g rea t ly  complicated by t h e  decrease i n  t h e  s t rength  of t h e  a r r iv ing  s ignal .  
Thus, f .e., during a nondirectional transmission, t h e  energy of t h e  radiowaves 
from the  spaceship loca te2  i n  t h e  neighborhood of Mars ( a t  a dis tance of /332
60 mi l l ion  km) w i l l  be 10 X smaller than when photographs of t h e  far s ide  of 
t h e  Moon are t ransmit ted from outer  space (0.5 mi l l ion  Ism) (Bibl.3). Hence, 
space communications l i n e s  use t ransmit t ing and receiving antennas with a high 



d i rec t ive  gain. I n  this case, t h e  planned antenna mirrors reach a s i z e  of 
250 - 300 m (Bibl.3). To enhance t h e  s e n s i t i v i t y  of t h e  receiving devices, 
molecular and parametric amplif iers  with a low noise l e v e l  are employed. 

The use of lasers and optical-range amplifiers i s  of par t ic .u la r ly  grea t  
promise t o  assuring rad io te lev is ion  communications over dis tances  of many m i l 
l i o n s  of kilometers. In  this case, t h e  comunication channel displays a very 
sharp d i r e c t i v i t y  and a high noiseproof feature, w h i l e  a t  t h e  same t h e  trans
mit t ing an ex t raord inar i ly  la rge  amount of information [as many as 10,000 tele
v is ion  programs via a s ingle  channel (Bibl.3). 

Section 4. Basic Parameters of a Television Amaratus 

The spec ia l  features of t h e  t e l ev i s ion  method of image transmission and t h e  
d i s to r t ions  caused by t h e  e l e c t r i c a l  t r a c t  during transmission of t h e  video 
s igna l  cause t h e  p i c t u r e  received on t h e  screen of t h e  v i sua l  display tube t o  
differ t o  a c e r t a i n  extent  from the  reproduced object .  These differences are 
associated with t h e  l o s s  of minor d e t a i l  owing t o  t h e  l imited resolving power 
of a system with a l imi ted  number of t ransmissible  gradations i n  br ightness  and 
with a l imited tube s e n s i t i v i t y  (appearance of image noise i n  t h e  form of "snow
flakes") ;  with blurr ing of t h e  black-and-white image boundaries oWing t o '  f i n i t e  
dimensions of scan elements, and with various o ther  causes. I n  t h e  presence of 
low il lumination, t h e  d i s t o r t i n g  e f f e c t  of these  f ac to r s  may prove so  pronounced 
t h a t  t h e  image W i l l  be  of an unsa t i s fac tory  quali ty.  The minimal i l luminat ion 
a t  which the  system may t ransmit  an image of a sa t i s f ac to ry  qual i ty  i s  chief ly  
determined by t h e  s e n s i t i v i t y  of t h e  pickup tube. 

The development of general  c r i t e r i o n  f o r  t h e  qua l i ty  of t e l ev i s ion  systems 
i s  encountering considerable d i f f i c u l t i e s  (Bibl.13). 

Fundamentally, parameters such as t h e  resolving power, t h e  image cont ras t  
range and t h e  transmission of gradations i n  br ightness  serve t o  p a r t i a l l y  char
ac t e r i ze  t h e  qual i ty  of t h e  t ransmit ted images (Bibl.1). These parameters are 
of decis ive importance i n  t h e  se l ec t ion  and evaluation of t h e  pickup tube and 
t h e  e n t i r e  space-borne t e l ev i s ion  system. I n  t h e  l a t t e r  case, t h e  range and 
zone of observation a l s o  are of e s s e n t i a l  importance. 

Sens i t iv i ty .  The s e n s i t i v i t y  of a t e l ev i s ion  system i s  characterized by 
t h e  minimum working i l luminat ion Et of t h e  tube. It c l e a r l y  i s  a function /333 
of t h e  time of t h e  charge accumulation (exposure) and of t h e  s e n s i t i v i t y  of t h e  
tube i n  i t s  c i r cu i t ry .  

The s e n s i t i v i t y  of t h e  pickup tubes i s  characterized by t h e  r a t i o  of maximum 
magnitude U of t h e  video s igna l  t o  t h e  mean square noise  voltage a t  t h e  output 
of t h e  first amplifier s tage  

(13.XIII) 


It may be general ly  assumed t h a t  t h e  image begins t o  be v i s i b l e  against  t h e  
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noise  background when JI = 1 and acquires a s a t i s f a c t o r y  qua l i t y  when J[ = 30 
(Bibl.15). 

The f luc tua t ion  noise i s  due t o  a chaotic change of t h e  r e s i s t o r  voltages 
and t o  f luc tua t ions  of t h e  e l ec t ron  fluxes both i n  t h e  pickup tube i t s e l f ,  and 
i n  t h e  preamplifier tube, with t h e  shot noise accounting f o r  t h e  g rea t e r  p a r t  of 
this noise. 

Fig.17.XIII Ci rcu i t  Diagram of Pickup Tube. 

A simplified diagram of t h e  preamplification of t h e  video s igna l  of a 
vidicon-type tube i s  shown i n  Fig.17.XIII. The load impedance represented by 
t h e  parallel-connected load r e s i s t o r  RA and t h e  capacitor C i s  according t o  the  
known equation 

( ~ . X I I I )  

where u) i s  t h e  cyc l i c  frequency. 

From eq.(L!+.XIII) it can be seen t h a t  as t h e  frequency increases  t h e  s igna l  
taken off t he  load r e s i s t o r  decreases. T h i s  causes frequency d i s to r t ions  which 
must be compensated by cor rec t ing  t h e  video amplifier.  The amplitude-frequency 
c h a r a c t e r i s t i c  of t h e  amplifier i n  t h e  presence of t h e  cor rec t ion  i s  

K ( v )  =KO 1’ I + (2nv&C)2, (15 .XIII) 

where KO i s  a constant equal t o  t h e  ga in  a t  low frequencies. 

Thus, t he  video s igna l  voltage a t  t h e  preamplifier output w i l l  be, through
out t h e  frequency range V ,  

U = isK (v)z ( v )  = KO/?,&, (16 . X I I I )  

where is i s  t h e  s igna l  current of t h e  pickup tube. 

I n  t h e  c i r c u i t  considered, t h e  p r i n c i p a l  noise i s  due t o  t h e  shot m 
f luc tua t ion  noise Us.t. of t h e  s igna l  a t  t h e  tube output, t h e  thermal f luc tua t ions  
i n  the  load r e s i s t o r  (Uth . )  and of  t h e  shot f l u c t u a t i o n  n o i s e  (Us,a.t.) a t  the out
put  of t h e  f i r s t  ampl i f ie r  tube. The f luc tua t ions  of t h e  vidicon s igna l ,  i n  
t h e i r  turn,  contain two components due t o  t h e  shot  f l uc tua t ions  of t h e  beam cur
r en t  and t h e  shot f l uc tua t ions  of t h e  secondary emission current of t h e  t a r g e t .  

The r e l a t i o n  f o r  t h e  mean square output voltage of t h e  shot f l uc tua t ions  of 
s igna l  current is according t o  t h e  S c h o t t w  equation, taking i n t o  account t h e  



r e l a t i o n  ( l 6 . X 1 1 1 ) ,  i s  wr i t t en  as 

= 2i, KacR2pa' AT, (17 .XIII) 

where CY' i s  a coe f f i c i en t  which takes i n t o  account t h e  increase  i n  f luc tua t ions  
due t o  secondary emission during t h e  charge interchange, and e i s  t h e  e lec t ron  
charge. 

The mean square voltage of t h e  thermal noise due t o  the  load r e s i s t ance  
W i l l  be as follows a t  the  ampl i f ie r  output (according t o  the  Nyquist's equation) 

U2 = 4kT1(2, R ,  Av. ( 1 8 . X I I I )th  

The mean square voltage of t h e  shot noise of t h e  preamplifier tube a t  t h e  
output, as determined from t h e  analogous equation, W i l l  i n  this case be 

U2s.a.t. = 4kTR,,l(' (v)Av,  (19 . X I I I )  

where R , i s  t h e  equivalent no ise  r e s i s t ance  of t h e  f i r s t - s t a g e  preamplifier tube. 

Note t h a t  t h e  last  noise component i s  not uniformly d i s t r i b u t e d  over t h e  
frequency band Av but increases  with increase  i n  t h e  frequency v of t h e  video 
s igna l ,  commensurately w i t h  t h e  increase  i n  t h e  frequency-dependent s tage  gain. 

The mean square r e s u l t a n t  f l uc tua t ions  W i l l  be, i n  accordance with t h e  rule 
for t h e  addi t ion  of noises from independent sources, 

+ 16n2kTC2R,v2).  

Taking eqs .(16 . X I I I )  and (13. X I I I )  i n t o  account, we have 

(21.XIII) 

The above r e l a t i o n  shows t h a t  t h e  thermal noise, which normally contri- /335 
butes most t o  t h e  ove ra l l  noise, may be reduced by increas ing  t h e  load resist
ance Ra, although this requires a gain cor rec t ion  a t  high frequencies i n  accord
ance with eq.(lS.XIII). 
presence of i n t e g r a l  s o l a r  i l l m i n a t i o n  Et on t h e  tube, may be expressed by t h e  

The video s i g n a l  is,generated by t h e  vidicon i n  t h e  

conventional equation 
is = yFt S, (22.XIII) 

where ,y i s  t h e  current s e n s i t i v i t y  of t h e  t a r g e t ,  averaged over t h e  region of 
i t s  s p e c t r a l  s e n s i t i v i t y ,  and s i s  t h e  area of t h e  photosens i t ive  surface of t h e  
t a r g e t .  
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The r e l a t i o n  of t h e  i l lumina t ion  E t  on t h e  tube t o  t h e  i l luminat ion E of 
t he  objec t  i s  determined by eq.( 2.XII). Considering this, from eqs.( 21.XIII) 
and (22.XIII) we f i n d  t h e  i l lumina t ion  E required f o r  a sa t i s f ac to ry  performance 
of t h e  vidicon-type t e l e v i s i o n  system (when $ = 30): 

where p i s  t h e  mean r e f l e c t i v i t y  of t h e  object ,  P i s  t h e  t ransmiss iv i ty  of t h e  
l e n s  and of t h e  layer of t h e  atmosphere, 6 i s  t h e  re la t ive l e n s  aper ture ,  z i s  
t h e  zeni th  angle of t h e  sun at t h e  moment of observations.  

From eq.(23.XIII) i t  follows t h a t  t h e  s e n s i t i v i t y  of t h e  vidicon-type pickup 
camera depends on a l a rge  number of parameters of t h e  t e l e v i s i o n  system, as w e l l  
as on t h e  proper t ies  of i t s  op t i c s  and atmospheric transparency. 

For tubes of t h e  image-orthicon type, which employ a secondary-emission 
mul t ip l ie r ,  t h e  amplif icat ion of t h e  video s i g n a l  i s  so considerable t h a t  t he  
voltage f luc tua t ions  a t  t h e  load r e s i s t o r  need not be taken i n t o  account. I n  
this case, current  f l uc tua t ions  i n  t h e  pickup tube i tself  are decis ive.  A s  a 
result, the  i l lumina t ion  E of t h e  object ,  required f o r  operation of t he  tube, 
i s  markedly smaller; however, t h e  Jr r a t i o  i n  this case i s  low only f o r  low i, 
(Bib1.15). 

In  ap l i e d  t e l e v i s i o n  systems of t h e  type PTU-OM (closed-circui t  i n d u s t r i a l  
t e l ev i s ion7, e.g., with s e r i a l l y  manufactured vidicons,  a sa t i s f ac to ry  image 
qual i ty  i s  achieved when E = 50 lu ,  and i n  those incorporat ing an image orthicon, 
when E = severa l  lux, given a d e f i n i t i o n  of -500 l i n e s  i n  the  v e r t i c a l  and hori
zonta l  (Bibl.16). I n  spec ia l  systems, as w a s  previously pointed out ( c f .  Sect.2 
of this chapter) pickup tubes with a much higher s e n s i t i v i t y  may be employed. 

ImaPe cont ras t  range and image dis tance.  Image cont ras t  range K1 i s  t h e  /336 
term applied t o  the  r a t i o  of t h e  g rea t e r  br ightness  B1 i n  t he  image f i e l d  t o  t h e  
lesser br ightness  Ba, i.e., 

( & . X I I I )  

The maximum image cont ras t  range K l m a x  = -i s  termed t h e  brightnessB m a x  
range. B m i n  

The cont ras t  K i s  r e l a t ed  t o  t h e  image cont ras t  range by t h e  obvious equation 

(25 . X I I I >  

The image cont ras t  range and t h e  cont ras t  are determined not  only by t h e  
cha rac t e r i s t i c s  of t h e  t e l e v i s i o n  system, bu t  a l s o  by t h e  cont ras t  of t h e  t rans
mitted image on t h e  pickup tube and t h e  conditions under which t h e  image i s  
viewed. The ex terna l  i l lumina t ion  due t o  atmospheric op t i c s  o r  t o  t h e  increase  
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i n  t h e  level of i l lumina t ion  of t h e  visual-display tube screen reduce t h e  magni
tude of K and K1. 

I f  an objec t  having a n a t u r a l  cont ras t  K with i t s  background i s  observed 
through a l a y e r  of atmosphere having t h e  t ransmiss iv i ty  Pa and t h e  haze bright
ness B h ,  t h e  image-contrast range a t  t h e  in le t  of t h e  o p t i c a l  system win be, as 
was  pointed out previously ( c f .  Sect .3, Chapt .XII), 

(26.XIII) 


where Bob and Bb i s  t h e  n a t u r a l  brightness of t h e  object and of t h e  background, 
respectively,  when observed from a c lose  d is tance  (Bh = 0). 

Thus, t he  influence of t h e  atmosphere manifests i tself  not only i n  reducing 
t h e  i l lumina t ion  of t h e  image owing t o  t h e  a t tenuat ion  of r ad ian t  energy f luxes  
but a l s o  i n  t h e  reduction of t h e  image con t r a s t  range owing t o  t h e  addi t iona l  
haze brightness.  

The ex terna l  i l l m i n a t i o n  of t h e  kinescope screen reduces t h e  apparent 
image cont ras t  range f o r  t h e  same phys ica l  reasons. 

The na tu ra l  cont ras t  of t h e  meteorological ob jec ts  subject t o  de tec t ion  
w i t h  t he  a i d  of t e l e v i s i o n  systems i s  s u f f i c i e n t l y  Large. Thus, e.g., i n  ob
serva t ions  of s txa tus  clouds with t h e  r e f l e c t i v i t y  P o b  = 30% agains t  t h e  back
ground of land (p, = 15%) we have K = 50%. For t h e  middle t ier  of thunderstorm 
clouds o r  for an overcast, K increases  t o  70 - 90% above land and sea. The con
t ras t  of icebergs (Fob = 40%)agains t  t h e  background of water (V, = 8%)reaches 
80%. 

The reduction i n  K of ground ob jec t s  owing t o  atmospheric in f luences  i s  /337 
l a rge ly  a function of weather  conditions. T h i s  e f f e c t  exe r t s  r e l a t i v e l y  l i t t l e  
influence on t h e  de tec t ion  of clouds, s ince  t h e  most t u rb id  l a y e r s  of t h e  atmos
phere a r e  located near t h e  e a r t h  surface.  

The range of t h e  t e l e v i s i o n  observation from t h e  a l t i t u d e  H i s  c l e a r l y  de
termined by geodetic and meteorological f ac to r s .  For a s u f f i c i e n t l y  high H or 
f o r  observations i n  a d i r e c t i o n  c lose  t o  t h e  nadir,  t h e  dec is ive  f a c t o r s  a r e  
meteorological, ch i e f ly  t h e  haze brightness Bh .  

The performance of a t e l e v i s i o n  system i s  not, of course, determined by t h e  
image cont ras t  range a t  t h e  pickup-tube photocathode. Instead it i s  determined 
by t h e  image reception cont ras t ,  i.e., by t h e  cont ras t  range of t h e  s igna l  Ul a t  
t h e  tube output. On observation of an objec t  aga ins t  i t s  background, t h e  s i g n a l  
cont ras t  range will be 

(27. XIII) 

where.Uob, U b  and u h  are t h e  tube output s igna l s  i n  t h e  presence of a photo
cathode a f fec ted  by r a d i a t i v e  f l u e s  from t h e  object,  t h e  background and t h e  
haze, respectively.  
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The values of t h e  s igna l s  en ter ing  i n t o  eq.(27.XIII) W i l l  be w r i t t e n  as 
before ( c f .  Chapt.X) f o r  i d e a l l y  d i f fus ing  sur faces  of l a r g e  objec ts  ( f i l l i n g  
t h e  e n t i r e  f i e l d  of v i e w  of t h e  l e n s )  and observed a t  t h e  nadi r  

5 t 

I 
(28.XIII) 

I 

where a i s  t h e  area of t h e  entrance p u q i l  (aper ture)  of t h e  l ens ;  w i s  t h e  s o l i d  
angle of v iew;  Ra i s  t h e  load r e s i s t ance  of t h e  tube; Ex i s  t h e  s p e c t r a l  energy 
dens i ty  of t h e  i l lumination, "1 i s  t h e  s p e c t r a l  coe f f i c i en t  of t h e  presence of 
haze i n  t h e  atmospkere; pob;x and Pb.1 are t h e  r e f l e c t i o n  f a c t o r s  of t he  objec t  
and t h e  background, respec t ive ly ;  pX = Pa~P0,xi s  t h e  s p e c t r a l  transmissivity,
taking i n t o  account t h e  t ransmiss iv i ty  of t h e  atmosphere Pal and of t h e  op t i c s  
Po,l; yx i s  t h e  current s e n s i t i v i t y  of t h e  tube  with respect t o  t h e  spectrum; /338
A 1  - ha i s  t h e  s p e c t r a l  s e n s i t i v i t y  range of t h e  system. 

The quan t i t i e s  and pX , entering i n t o  eqs.( 28.XIII), depend on t h e  dis
tance of observation f o r  a given state of t h e  atmosphere and t h e  pos i t i on  of t h e  
sun r e l a t i v e  t o  t h e  l i n e  of s igh t  (on i l lumina t ion  by d i r e c t  s o l a r  rad ia t ion ,  
t e l e v i s i o n  v i s i b i l i t y  may be completely absent).  

Hence, U1 w i l l  decrease with t h e  increas ing  d is tance  t o  t h e  object as a 
function of t h e  increase  i n  t u r b i d i t y  (opac i ty)  of' t h e  atmosphere, ch ie f ly  owing 
t o  t h e  increase  i n  t h e  haze coe f f i c i en t  "1 i n  t h e  s p e c t r a l  s e n s i t i v i t y  range of 
t h e  optics-pickup tube system. The o p t i c a l  d i s tance  of t h e  t e l e v i s i o n  observa
t i o n  w i l l  be t h e  m a x i "  d i s tance  L,,, at, which, under given conditions, t h e  
cont ras t  range of t h e  s igna l s  Ul at t h e  tube  output w i l l  be equal t o  t h e  thres 
hold value f o r  a p a r t i c u l a r  t e l e v i s i o n  system U l t h r s s h o l d .  

FZg.18.XIII S igna l  Contrast Range as  a Function 
of Distance t o  Object . 
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The threshold con t r a s t  range U l t h r e s h o l d  i s  one of t h e  most important p a r a  
meters of a t e l e v i s i o n  apparatus. Its magnitude depends on t h e  tube s e n s i t i v i t y  
and va r i e s  within limits between 1.02 and 1.1 (Bibl.15). 

Thus, t h e  determination of t h e  d is tance  Lm,, of t e l e v i s i o n  observation i s  
reduced t o  f ind ing  t h e  s igna l  con t r a s t  range f o r  a given tube under given condi
t i o n s  of observation as a func t ion  of t h e  d is tance  t o  t h e  object and i t s  back
ground Ul = f (L) ,  and comparing t h e  obtained quantity wi th  t h e  threshold con
trast range U l t h r e s h o l d  of t h e  apparatus. The maximum d is tance  Lm,, a t  which 
t h e  equal i ty  U1 = V,t h r e s  h o  d i s  s a t i s f i e d ,  represents t h e  o p t i c a l  d i s tance  of 
t e l e v i s i o n  observation under given. conditions (Fig .18 . X I I I )  . 

The d is tance  of t e l e v i s i o n  observation may be estimated with t h e  a i d  of 
approximate equations (Bibl.15) derived on t h e  b a s i s  of t h e  following s impl i f i 
ca t ions  : 

(29 .XIII) 

where E, F ,  and are means with respect t o  t h e  s p e c t r a l  s e n s i t i v i t y  range h2 -
- A,. 

Then it follows from eqs.(27.XIII) and (29.XIII) t h a t  L22e 

(30 .XIII) 

Hence, t he  operation of a t e l e v i s i o n  apparatus requires a s u f f i c i e n t l y  
l a rge  cont ras t  between t h e  r e f l e c t i v i t i e s  of t h e  objec t  and t h e  background, and 
the  i l lumina t ion  of t h e  necessary image d e t a i l s  on t h e  photocathode must exceed 
t h e  l imi t ing  s e n s i t i v i t y  E', of t h e  apparatus. 

Number of reproducible gradations of brightness.  The number of gradations 
of brightness, i .e.,  of l e v e l s  of v a r i a t i o n  i n  br ightness  d i sce rn ib l e  t o  t h e  
human eye, i s  determined by t h e  threshold of t h e  con t r a s t  s e n s i t i v i t y  K t h r b s h o l d  
of the  eye. 

Suppose K t h r e s h o l d  i s  known. Then t h e  first d i sce rn ib l e  gradation B1 i n  
brightness is, i n  accordance wi th  eq.( 28.XI11), determined by t h e  r e l a t i o n  

and t h e  second gradation 

Bz =B1 f IC,,, B2 =( 1 - (32.x11r) 
The last  d i sce rn ib l e  gradation by analogy with eq. (32.XIII), i s  w r i t t e n  as 
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B,,, = ( 1  -Kth,.)-’lLj”o - (33 .=11> 

From eq. (33 . X I I I )  we obtain t h e  number of d i scern ib le  brightness gradations 

It follows from eq.(3,!+.XIII), t h a t  t h e  m a x i ”  number of gradations of a 
=good t e l ev i s ion  image ( K l m a x  = 50, Kthreshold 0.2 under conditions of observa

t i o n  of t h e  cinescope screen) must be n = 20. 

The process of t h e  electron-optical  conversion and transmission of t h e  
video s igna l  i s  v i r t u a l l y  nonlinear (Bibl.20) and may be expressed by a power 
function of t h e  form 

YO
B t = K i , o B o ,  (35.XIII) 

where Bt and Bo are t h e  brightnesses of elements a t  t h e  input  and output of t h e  
system; Kl,o i s  the  r a t i o  between t h e  mean brightnesses of t h e  image and t h e  ob
j e c t ;  yo i s  t h e  cont ras t  f ac to r  which takes  i n t o  account t h e  d i s to r t ions  enroute 
from t h e  t ransmit t ing t o  t h e  receiving s ide.  

The eq.(35.XIII) shows t h a t  yo > 1 corresponds t o  a grea te r  image-contrast 
range than t h e  cont ras t  range of t h e  object ,  w h i l e  yo < 1corresponds t o  a 
smaller image cont ras t  range. 

Thus, i n  t e l ev i s ion  it i s  poss ib le  t o  vary t h e  cont ras t  range of t h e  /340
dark or l i g h t  image areas and thereby a l s o  t o  vary t h e  number of t h e  brightness 
gradations d iscern ib le  i n  these areas. The spec ia l  devices introduced for this 
purpose i n t o  t h e  e l e c t r i c a l  t r a c t  are termed nonl inear i ty  correctors  o r  gamma-
correctors.  

The number of d i scern ib le  brightness gradations i n  te lev is ion  systems i s  
no-lly small. Thus, i n  i n d u s t r i a l  TV i n s t a l l a t i o n s  it i s  of the  order of 
severa l  unities, [usual ly  n = 6 (Bib1.16)l. 

Resolving power and. -yiednR range. The resolving power of a t e l ev i s ion  
system, which character izes  i t s  a b i l i t y  t o  reproduce minor d e t a i l s  of an image, 
determines the  d e f i n i t i o n  of t h e  observed p ic ture .  A s  was previously pointed 
out ( c f .  Sec t . l ) ,  it i s  estimated according t o  t h e  number of resolvable l i n e s  
za or op t i ca l  l i n e s  N. The ac tua l  resolving power of a t e l ev i s ion  system i s  de
termined with t h e  a i d  of test pa t t e rns  which contain a number of w h i t e  and black 
l i n e s  of s t r i p s  width, with gradations i n  hundreds of resolvable l i n e  numbers 
(300, 400, 500, e tc .  ,with t h e  width of s t r i p s  and gradation i n t e r v a l s  300 
being twice as l a rge  as at  gradation 600). T h i s  may be exemplified by t h e  w e l l -
known test  p a t t e r n  0249, which i s  transmitted i n  t e l ev i s ion  broadcasting. 

Considering t h a t  t h e  analyzing spot moves along rigorously d e f i n i t e  tra
jec tor ies ,  the  ac tua l  resolving power of t h e  system i s  smaller than t h e  number 
of a c t i v s  scan l i n e s  Z a .  I n  f ac t ,  suppose t h e  number of t h e  horizontal  black 
and w h i t e  l i n e s  of a test pa t t e rn  i s  Za and t h e  diameter 6 of t h e  analyzing spot 
i s  determined by eq.(2.XIII). Then, t h e  black and w h i t e  s t r i p s  of width 6 will 
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be, on transmission, reproduced separately only when t h e  center  of t h e  analyzing 
spot s t r i k e s  exact ly  t h e  center  of t h e  s t r i p  (Fig.19.XIII). If, on t h e  other  
hand, t h e  width of t h e  test s t r i p s  i s  doubled, then they w i l l  be reproduced 
separately regardless of t h e i r  pos i t i on  with respect t o  t h e  l i n e s  of t h e  trans
mitting-side raster. Hence, t h e  ac t ive  number Z a  of l i n e s  assures  a resolving 
power of at  least 0.5 Za l i n e s  i n  the  v e r t i c a l  d i rec t ion .  It i s  normally as
sumed t h a t  mean resolving power i n  t h e  v e r t i c a l  d i r ec t ion  i s  0.75 Za (Bibl.9). 
Hence, f o r  z = 625 and CY = 0.18 (cf .  Sect.1 of this chapter),  when Za = 512 
Lines, t h e  real mean resolving power i n  t h e  v e r t i c a l  d i r ec t ion  i s  384 l i n e s  
( t e l ev i s ion  l i n e s )  . 

Real resolving power i n  t h e  horizontal  direct ion,  as i s  known (c f .  Sect.1 
of this chapter),  depends on t h e  dimensions of t h e  scanning spot and on t h e  
passband of t h e  e l e c t r i c a l  t r a c t .  Given a passband whose upper frequency i s  
taken i n  accordance with eq. ( 5  . X I I I ) ,  t he  real horizontal  resolving power /%l
w i l l  equal kz, i.e., it W i l l  exceed t h e  real de f in i t i on  i n  t h e  v e r t i c a l  even f o r  
a square frame ( k  = 1). So t h a t  t h e  real v e r t i c a l  and horizontal  resolut ions 
could be t h e  same, t h e  upper frequency passed by the  systemmay be reduced a t  
l e a s t  t o  2 

kzal’c v ~ n b X  =; 0.75 
2 
-=O.3751:~:VC . (36.XIII) 

I n  a r e a l  system, moreover, t h e  analyzing and synthesizing spots  have 
f in i te  dimensions and move continuously r a the r  than i n  jumps. T h i s  results i n  
l imi t ing  t h e  horizontal  resolving power of t h e  system even when t h e  frequency 

::;.:. . .: :El_.... 
. .. .. . , . .;.;... ....: 
..:._: 

Fig.19.XIII Ver t ica l  Resolution as a Function of 
Raster Posit ion.  

a - Transmitted images; b - Received images. 

passband of  t h e  t e l ev i s ion  t r a c t  i s  unres t r ic ted .  The poin t  is ,  t h a t  during 
t h e  transmission of v e r t i c a l  black-and-white l i nes  the  video s igna l  w i l l  be  of 
a roughly rectangular shape only when t h e  dimensions of t h e  spot are s m a l l  com
pared with t h e  ~ d t hof these  s t r i p s .  A s  t h e  dimensions 6 of t h e  spot approach 
t h e  width of t h e  v e r t i c a l  s t r i p s ,  t he  video s igna l  acquires a sine-wave shape 
and i t s  amplitude (depth of modulation) decreases (Fig.20.XIII). In  t h e  event 
t h a t  s t r i p  width i s  smaller than 6 ,  t h e  var iab le  component of t h e  video s i g n a l  
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tends t o  zero. T h i s  e f f e c t  i s  i n t e n s i f i e d  by t h e  analogous processes of a loss  
i n  depth of t h e  modulation on t h e  receiving s i d e  during reproduction of d e t a i l s  
of t h e  object.  T h i s  e f f e c t  i s  termed aper ture  d i s t o r t i o n .  Owing t o  these  /342 
aper ture  d i s to r t ions ,  t h e  d e t a i l s  of t h e  image l o s e  con t r a s t  wikh t h e  decrease 
i n  s i ze ,  unt i l  f i n a l l y  they cease t o  be reso lvable  and merge wi th  t h e  general 
gray background. The black-and-white boundaries ge t  b lur red  t o  an extent which 
i s  roughly equal t o  t h e  dimension of t h e  g r e a t e s t  scan element (usua l ly  on t h e  
receiving s ide) .  

U t H i d e  s t r i p s  Narrow s t r i p s  
w h i t e  l e v e l  h

hi can b r i gh t n e s s 
l e v e l  C\-

Fig.20.XIII Effect of Finite Dimensions of Scan Elements 
on t h e  Video Signal Shape. 

Sometimes the  image d e f i n i t i o n  can be increased by methods of aper ture  
cor rec t ion  based on increas ing  t h e  f r o n t  steepness of t h e  video s igna l  i n  t h e  
e l e c t r i c a l  t r a c t  (Bibl.15). 

The t o t a l  resolving power of a t e l e v i s i o n  system i s  determined by t h e  re
solving power of i t s  elements ( lens ,  tube, e l e c t r i c a l  t r a c t ) ,  each of which 
makes i ts  own cont r ibu t ion  t o  t h e  obtained image. A s  i n  a photographic system 
(cf  . Chapt . X I I ) ,  t h e  t o t a l  resolving power i s  smaller than  t h e  resolving power 
of t h e  ind iv idua l  elements. Assuning t h a t  t h e  system cons i s t s  of two bas ic  
elements: namely, of t h e  lens  and of t h e  pickup tube with i t s  e l e c t r i c a l  t r a c t ,  
then t h e  resolving power N of t h e  system may be estimated with t h e  a i d  of 
eq.(&.XII). For example, f o r  No = 100 o p t i c a l  lines/" = 200 scan lines/" and 
t h e  resolving power of t h e  pickup tube Nt = 50 lines/" (which corresponds t o  a 
vidicon with za = 500 l i n e s  and h = 10 mm), we have N = 40 lines/" (at t h e  
center  of t h e  t ransmi t ted  frame) 

When evaluating t h e  p o s s i b i l i t i e s  of a t e l e v i s i o n  device used t o  inves t i 
ga t e  a p lane t  surface (Bib1.42), a vi ta l  f a c t o r  t o  be considered i s  t h e  t e r r a i n  
resolution, which depends on t h e  a l t i t u d e  H of t h e  system above t h e  surface as 
w e l l  as on i t s  angle of t h e  f i e l d  of v i e w  CY (Fig.21.XIII). For a system resolv
i n g  power equal t o  za ac t ive  l i n e s ,  t h e  l i n e a r  dimension A& of the  resolvable 
element on t e r r a i n  surface .wi l l  be, without tak ing  i t s  curva ture  i n t o  account, 
determined from t h e  equation 

a a
dl = dl' sec y =~ D sec y =-H s c c 2 y ,  (37.XIII)

za z a  
CYwhere - i s  t h e  angle a t  which t h e  given reso lvable  t e r r a i n  element A&, &&
Za 
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located a t  t h e  angle y t o  t h e  v e r t i c a l  ( i n  radians),  can be seen, and D i s  t h e  
inc l ined  d is tance  t o  t h e  element A&. 

From eq.(37.XIII), it follows, e.g., t h a t  from t h e  a l t i t u d e  H = 700 km of 
t h e  Tiros weather sa te l l i te  a system with t h e  f ixed  resolving power za = 500 
t e l e v i s i o n  l i n e s  a t  h = 8 mm (Bibl.8) ( N  = 40 lines/"), with respect t o  t h e  
e n t i r e  f i e l d  of View CY = 104" = 1-75 rad, makes it poss ib l e  t o  discriminate t h e  
elements A t ,  = 0.7 km a t  t h e  center  of t h e  f i e l d  of v i e w  (y = 0) and A& = 2 km 
at i ts  edge. Allowing f o r  aper ture  d i s t o r t i o n s  and t h e  d e t e r i o r a t i o n  i n  resolu
t i o n  a t  t h e  edge of frame, it may be assumed t h a t  t h e  r e so lu t ion  of t h e  televi
s ion  devices i n s t a l l e d  i n  t h e  first f e w  Tiros satellites was 1 - 1.5 km a t  t h e  
center  and 3 - 4.km a t  t h e  edge of t h e  f i e l d  of View (Bib1.28). 

Fig.21.XIII Relation of Resolving Power za of t h e  
System t o  Terrain Resolution A&. 

Note t h a t  t h e  t e r r a i n  r e so lu t ion  a t  t h e  center  of t h e  f i e l d  of v i e w  ( w i t h  
respect t o  t h e  nadi r )  may be estimated with t h e  a i d  of t h e  s c a l e  coe f f i c i en t  

m = -	f i n  t he  same manner as i n  t h e  case of photographic systems ( c f .  Chapt.XI1).H 

Then we f ind  t h a t  
(38.XIII) 

where h i s  the  v e r t i c a l  dimension of t h e  frame, on condition t h a t  t h e  resolving 
power along and across  t h e  l i n e s  i s  t h e  same; f i s  t h e  f o c a l  length of t h e  lens, 
i n  t h e  f o c a l  plane of which t h e  l i gh t - sens i t i ve  sur face  of t h e  pickup tube i s  
located. 

The eq.(38.XIII) obviously i s  a p a r t i c u l a r  case of being r e l a t e d  with 
eq. (37.xIII). 

These r e l a t i o n s  show, t h a t  t h e  terrain resolving power of a t e l e v i s i o n  
system i s  l a r g e l y  a func t ion  of t h e  angle CY of t h e  f i e l d  of v iew of t h e  l e n s  and 
of t h e  a l t i t u d e  H. These arameters a l s o  determine t h e  t e r r a i n  Viewing range 
(width of t h e  viewing zone?. A satel l i te  t r ave l ing  i n  a c i r c u l a r  o r b i t  r e t a i n s  
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a fixed t e r r a i n  resolving power and viewing range. 

Disregarding t h e  curvature of t h e  viewed surface ( c f .  Chapt . X I )  t h e  width 
of viewing zone 

L =2 M  tanymax. (39 . X I I I >  

From eq.(39.XIII) we f i n d  t h a t  a zone having t h e  approximate width L = /344 
= 1100 km can be viewed from t h e  a l t i t u d e  H = 700 kin when t h e  viewing angle i s  
cy = ;?vmgx = 82', whereas t h e  broader zone L = 1850 km may be encompassed when 
cy = lo4 . Thus, t h e  wide-angle op t i c s  of t h e  camera of t h e  Tiros satel l i te  as
sures a t e r r a i n  frwe format of 1850 X 1850 km ( B i b l . 8 ) .  

The f o c a l  length of t h e  lens,  determinable from t h e  requirement of t h e  co
incidence between dimensions of t h e  image and t h e  l i gh t - sens i t i ve  surface of t h e  
tube, shown i n  Fig.21.XII1, will be 

h 
f =- - c o t  ymax ( for f << If), (40 .XIII) 

where h i s  t h e  l i n e a r  dimension of t h e  l i gh t - sens i t i ve  surface.  

For ymax= 52' and h = 8 mm, as we can see, a short-focus length w i t h  f = 
= 4 x 0.78 = 3.12 m i s  required. 

The eq.(38.XIII) implies t h a t  t h e  increase  i n  f o c a l  length f (decrease i n  
t h e  angle cy)  l e ads  t o  an increase  i n  t h e  t e r r a i n  reso lu t ion .  For s a t e l l i t e -
borne t e l ev i s ion  systems, such a method of increas ing  reso lu t ion ,  however, has 
a l imi ted  app l i cab i l i t y ,  because it e n t a i l s  an increase  i n  t h e  weight and dimen
s ions  of t h e  op t i c s  as w e l l  as i n  t h e  need t o  incorporate devices compensating 
t h e  temperature-induced va r i a t ions  i n  t h e  f o c a l  length of the  l e n s  and t o  reduce 
t h e  terrain-viewing range. 

To assure t h e  required i l lumina t ion  of t h e  photosens i t ive  tube surface,  a 

* *s u f f i c i e n t l y  l a r g e  r e l a t i v e  l e n s  aper ture  0 = -d
f 

must be ensured (see 

eq.( 5 . X I I )  . The o p t i c a l  systems used i n  American t e l e v i s i o n  cameras (Bibl.42) 
normally assure  a relative aper ture  of f / l ,  i.e., 6 = 1:l f o r  t h e  viewing angle 
cy = 20 - 30°, and f/2.5 t o  f/k.5 f o r  t h e  viewing angle cy = 60 - 90'. 

The attempt t o  increase  t h e  t e r r a i n  r e so lu t ion  l eads  t o  l imi t a t ions  on t h e  
poss ib le  observation t i m e  during t h e  na tu ra l  i l lumina t ion .  Thus, f o r  t h e  
aper ture  f/5O (at  t h e  focus f = 6250 mm and an entrance p u p i l  d = 125 mm), t h e  
image formed on t h e  tube has an i l lumina t ion  not higher than 0.0001 of t h e  ter
r a i n  i l l m i n a t i o n  E (Bibl.42). A s  t h e  i l l m i n a t i o n  approaches t h e  l imi t ing  
value of t h e  tube s e n s i t i v i t y ,  t h e  resolving power of t h e  tube begins t o  de
crease owing t o  image noise. 

When evaluating t h e  resolving power of t e l e v i s i o n  systems, it must, more
over, be considered t h a t  t h e  t e r r a i n  reso lu t ion  of t h e  area measuring AAAA km2 
i s  not s u f f i c i e n t  t o  allow t h e  de tec t ing  of ob jec ts  of t h e  dimension A&, s ince  
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t h e  de tec t ion  and recognition of an objec t  depends on i t s  dimensions and i t s  
configuration (given a s u f f i c i e n t  con t r a s t )  Inves t iga t ions  (Bibl.42) show t h a t  
t h e  de tec t ion  of an objec t  requires i t s  overlapping by 3 - 5 scan l i n e s  and i t s  
recognition i s  poss ib l e  on overlapping by 10 - 20 l i n e s .  Thus, t h e  t e r r a i n  /345 
reo lu t ion  A& Ism means t h a t  it i s  poss ib l e  t o  de t ec t  and recognize an objec t  
measuring approximately 10 A 4  or more. 

For weather observations from a satell i te,  it i s  necessary t o  have a com
pa ra t ive ly  low t e r r a i n  r e so lu t ion  of not more than  2 - 5 km (seats of thunder
storms, e tc . ) .  However, t h e  determination of types of clouds according t o  t h e i r  
s t r u c t u r a l  f ea tu re s  requires a resolving power of t h e  order of 150 m (Bibl.42). 

Section 5. Television Equipment of Weather S a t e l l i t e s  

The t e l e v i s i o n  equipment of weather satellites i s  designed f o r  opera t ive  
transmission of information about t h e  d i s t r i b u t i o n  of clouds over t h e  ter
restrial globe. The o r b i t s  of these  s a t e l l i t e s  are about 700 - 900 km high and 
are near-circular (Bibl.8, 33). The first f e w  satell i tes i n  the  Tiros series 
were equipped with two cameras, one wide-angle and one narrow-angle, which d i f 
fe red  on ly  i n  t h e  f o c a l  length of t h e i r  l enses  and operated independently of one 
another. Certain s a t e l l i t e s  were  equipped only with wide-angle cameras which 
provided t h e  p r i n c i p a l  information, such as the  Tiros I11 (Bibl-8).  

Fig.22.XIII Block Diagram of Television System of 
t h e  Tiros I S a t e l l i t e .  

A block diagram of t h e  TV equipment of t h e  Tiros I satel l i te  (Bib1.28) i s  
shown i n  Fig.22.XIII. P i ckw cameras 1and 1' have vidicons a and a' ' of a 
spec ia l  design (increased a b i l i t y  t o  withstand overloads, t a r g e t  shadow cur ren t  
reduced t o  a m i n i m u m )  wi th  t h e  diameter of 12.5 m and l i n e  number z = 500. 
Frame frequency vf = 0.5 cps makes i t  poss ib l e  t o  narrow t h e  video s i g n a l  fre

qencrband t o  62.5 kilo-cps. The video s i g n a l  amplifiers, located i n  cameras 1 
and 1 are, except f o r  t h e  first s tages  (preamplifiers),  assembled from semi
conductor elements. 

After ampl i f ica t ion  t h e  video s i g n a l  may be e i t h e r  d i r e c t l y  transmitted /346 
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or  recorded on magnetic t ape  i n  t h e  recording devices RD1 and depending on 
t h e  pos i t i on  of switches $1 and SZ. 

The t e l e v i s i o n  t r ansmi t t e r s  6 and 6' of bo th  cameras operate on antenna 5 
across t h e  separating f i l t e r  7. During t h e  per iod  w h i l e  t h e  satell i te is within 
t h e  range of communication with t h e  receiving s t a t i o n s  (6 - 1 2  min), 3.5 min are 
set as ide  f o r  t h e  transmission of t h e  recorded s igna l ,  with a d i r e c t  image 
transmission being ca r r i ed  out during t h e  remainder of this period. 

The ferromagnetic t ape  on which t h e  images were  recorded had a capacity of 
32 frames ( l eng th  120 m). 

The programmer 4,  whose c i r c u i t s  are indica ted  by t h e  broken l i n e ,  contains 
t h e  spacecraft  timer. T h i s  t i m e r  determines t h e  sequence of i n s t ruc t ions  and 
cont ro ls  t h e  operation of  t h e  cameras, t h e i r  synchronizing generators, t h e  
shu t t e r s  2 and 3, and t h e  recording devices. The programmer may be reset on in
s t ruc t ion  from t h e  ground via t h e  command rad io  l i n k .  

The s h u t t e r s  2 and 3, loca ted  i n  t h e  f o c a l  p lanes  of t h e  lenses  L1 and L, 
assured an exposure time of 0.0015 sec. The time i n t e r v a l  between exposures 
was '10sec. 

The angle of t h e  f i e l d  of v i e w  of t h e  camera 1was 104' at  a l e n s  speed
f/l.5, and t h a t  of t h e  camera 2 was 12.70 at  f/1.8. The dynamic operating range 
of t h e  cameras varied wi th in  limits of from 0.7 t o  66 l u  ( i l lumina t ion  on t h e  
photocathode). 

The frame area (with respec t  t o  t h e  nad i r )  of t h e  first camera was 1200 x 
x 1200 km f o r  t h e  average o rb i t i ng  a l t i t u d e  above t h e  t e r r a i n ,  with a resolving 
power of 1.6 - 3.0 km. That of t h e  second camera was  120 x 120 km and 0.3 
- O.$ km, respectively.  

1 

The power required from t h e  common source ( s o l a r  batteries w i t h  a capacity 
of 30 w a t t  and dry s torage  b a t t e r i e s )  was 9 w a t t  (Bib1.28). In t h e  l a t e s t  
Tiros-series satellites, t h e  angle of t h e  f i e l d  of v i e w  of t h e  narrow-angle 
camera was increased t o  750, wi th  t h e  objec t  of reducing t h e  volume of t h e  in
formation subjec t  t o  storage and transmission (Bib1.35). 

The t e l e v i s i o n  apparatus i n s t a l l e d  i n  t h e  Tiros VI11 satel l i te  has para
meters similar t o  those of t h e  equipment planned f o r  t h e  Nimbus satell i tes 
(Bibl.23, 26). It includes a vidicon with t h e  diameter of 25 mm and t h e  l i n e  
number z = 800. The t o t a l  weight of this instrument (pickup camera, timer, 
power converters and t r ansmi t t e r )  i s  9.6 kg. 

The t e l ev i s ion  cameras of t h e  vidicon type used i n  t h e  i n s t m e n t a t i o n  of 
t he  Nimbus s a t e l l i t e s  w e r e  per fec ted  by increas ing  thei.r  resolving power (rough
l y  2 x), improving t h e  l i n e a r i t y  of t h e  luminous c h a r a c t e r i s t i c s  of t h e  pickup 
cameras and expanding t h e i r  dynamic range (Bib1.33). 

The p r i n c i p a l  t e l e v i s i o n  equipment of t h e  satel l i te  (AVCS) i s  designed /347
f o r  daytime operation and cons i s t s  of three pickup cameras, 1, 2, and 3 
(Fig.23.XIII) wi th  a common synchronization and con t ro l  uni t  9. 
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The pickup tubes are so  aligned as t o  assure a broad t e r r a i n  viewing range; 
t h e  c e n t r a l  camera (angle of f i e l d  of v i e w  370) i s  d i r ec t ed  with respect t o  t h e  
nad i r  w h i l e  t h e  o p t i c a l  axes of t h e  two s ide  cameras are d i r ec t ed  at  t h e  angle 
of 3e t o  t h e  cen t r a l .  The overlap of t h e  f i e l d  of View of t h e  cameras across 
the  o r b i t  thus  i s  2'. The e n t i r e  system of cameras assures  t h e  scanning of a 
sec to r  measuring 770 x 2900 km from t h e  a l t i t u d e  of 900 Ism, with a photocathode 
i l lumina t ion  of a t  l e a s t  0.7 l u  (Bibl.42). 

Et-14 No r r c o r d i n g  A
I 
I 

t em 

s i g n a l s  Diaphragm 
con t ro  1 gn 	 cps s i g n a l s  

Conm ands 

Time s i g n a l s  

Fig.  23 .XI11 Block Diagram of Television Equipment 
of t h e  Nimbus S a t e l l i t e .  

1, 2, 3 - Pickup cameras; 4, 5, 6 - Video amplifiers;
7 - Frequency modulators; 8 - Storage device; 

9 - Synchronization and con t ro l  uni t ;  10 - Simultaneous 
transmission un i t ;  11- Radio t r ansmi t t e r .  

The i n t e r v a l s  between exposures a r e  91 sec, which assures  frame overlap by 
approximately 5% along t h e  o r b i t .  During a s ing le  o r b i t ,  each camera performs 
32 exposures. 

The t e r r a i n  resolving power va r i e s  from 0.5 t o  2.1 km over t h e  frame. The 
frame-scanning period Tf = 5.3 sec ;  t h e  frequency band -60 kilo-cps. 

Note t h a t  vidicons wi th  similar parameters, i n s t a l l e d  i n  t h e  Ranger V I  
spacecraft ,  enabled t h e  operation of t h e  t e l e v i s i o n  system i n  t h e  presence of a 
landscape brightness reaching s t i l b ,  and t h e i r  dynamic range was  0.5 
- 5.4 lu-sec f o r  t h e  exposure t i m e  of 5 msec (Bib1.11). 

The camera lenses  ( f  = 17 m) were equipped with diaphragms regulated 1348 
by means of a mechanism l inked  t o  t h e  pos i t i on  of t h e  solar-battery panels with 
respect t o  t h e  sun. The relative aper tures  of t h e  diaphragms varied wi th in  
limits of from l:4 t o  1:16 f o r  t h e  f ixed  e x p o s e e  t i m e  of 40 msec, which reduces 
b lu r r ing  t o  not more than  one-half of t h e  width of a t e l e v i s i o n  l i n e  (Bibl.42). 

To assure  an adequate con t r a s t  range f o r  cloud images, each camera contains 
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a brightness level c a l i b r a t o r  (16 levels) i n  t h e  shape of an  o p t i c a l  wedge pro
jected onto a tube, once t h e  s t a b l e  xenon lamp begins t o  glow. 

The output video s igna l s  of a l l  three cameras, which are mixed with syn
chronizing s igna l s  a t  t h e  frequency of 50 k i lo-c  s, are frequency-modulated by 
subcar r ie rs  i n  t h e  modulator u n i t  7 (Fig.23.XIII7. The modulated subcar r ie rs  i n  
the  frequency band of 70 - 120 kilo-cps are admitted e i t h e r  t o  t h e  d i r e c t  t rans
mission or t o  t h e  s torage  device 8 with  t h e  capacity of 64. frames (pe r  camera). 
The readout of t h e  image s i g n a l  wi th  t h e  simultaneous e rasure  of t h e  recording 
i s  ca r r i ed  out on command given by rad io  from t h e  ear th .  

I n  addition, t h e  Nimbus satel l i te  i s  equipped wi th  a wide-angle (108") op
e r a t i v e  t e l e v i s i o n  system (APT) containing an e l ec t ros t a t i c - t a rge t  vidicon. The 
increase i n  t h e  frame scanning time (Tf = 200 sec)  i n  this system makes i t  pos
s i b l e  t o  reproduce t h e  received image with t h e  a i d  of a facsimile-telegraphy 
equipment. The resolving power with respect t o  a frame encompassing 2900 X 

2900 km ranges from 1.7 t o  8.5 km ( z  = 800). 

A t  t h e  receiving s t a t ions ,  t h e  s igna l s  received from the  weather satellites 
are recorded on magnetic t ape  and simultaneously p i c tu red  on t h e  screen of t h e  
video rece iver  ( a t  i n t e r v a l s  of 8 sec) ,  then  photographed (not  more than  32 
frames p e r  o r b i t ) .  

During decoding of t h e  received images, allowance i s  made f o r  t h e  d i s to r 
t i o n s  due t o  t h e  o p t i c a l  system. 

A most important element i n  t h e  processing of t e l e v i s i o n  information i s  t h e  
r e l i a b l e  geographic i d e n t i f i c a t i o n  of t h e  received images. For this purpoze, 
t he  i d e n t i f i c a t i o n  i s  accomplished by graph-analytic methods cor rec t  t o  *2 of 
t h e  geographic l a t i t u d e  or, on u t i l i z i n g  t h e  o u t l i n e s  of v i s i b l e  s ec to r s  of land 
on t h e  image, t o  41' (Bibl.17). Following this geographic i d e n t i f i c a t i o n ,  t h e  
frame i s  superposed on a synoptic char t  i n  order t o  t r a c e  the  cloud f i e l d s .  
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